15 resultados para Terrorism -- Southeast Asia

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The taxonomic status of Coptotermes gestroi (Wasmann), C. havilandi Holmgren, C. travians (Haviland) and C. borneensis Oshima (Isoptera: Rhinotermitidae) is revised. The apparent discrepancy between the reported importance of C. havitandi in countries to which it has been introduced and the region from which it originated is shown to be due to misidentification and taxonomic confusion between C. travians, C. havilandi and C. gestroi. Based on an examination of specimens from Southeast Asia, two species are recognized, namely C. gestroi and C. travians. Coptotermes havilandi, described from imagos, is shown to be the same species as C. gestro described earlier from the soldier caste, and is designated a junior synonym. Coptotermes gestroi occurs from Assam through Burma and Thailand to Malaysia and the Indonesian archipelago, and has been introduced into other geographic regions, including parts of North and South America and the Caribbean. It is frequently found damaging wood in buildings, and is often intercepted outside its range in cargo onboard ships and sailing vessels, which is a likely mechanism for its spread to new geographical areas. Coptotermes gestroi has been misidentified in much literature as C. travians. Conversely, C. travians has been misidentified in recent literature in Peninsular Malaysia as C. havilandi and was redescribed from Borneo as C. borneensis, which is here designated a junior synonym of C. travians. It has a known distribution from Peninsular Malaysia to Borneo, and has not been found infesting wood in buildings. It is envisaged that the resolution of this taxonomic problem will enable the deployment of common pest management strategies for C. gestro the primary pest species of Coptotermes originating from Southeast Asia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim  This paper documents reconstructions of the vegetation patterns in Australia, Southeast Asia and the Pacific (SEAPAC region) in the mid-Holocene and at the last glacial maximum (LGM). Methods  Vegetation patterns were reconstructed from pollen data using an objective biomization scheme based on plant functional types. The biomization scheme was first tested using 535 modern pollen samples from 377 sites, and then applied unchanged to fossil pollen samples dating to 6000 ± 500 or 18,000 ± 1000 14C yr bp. Results  1. Tests using surface pollen sample sites showed that the biomization scheme is capable of reproducing the modern broad-scale patterns of vegetation distribution. The north–south gradient in temperature, reflected in transitions from cool evergreen needleleaf forest in the extreme south through temperate rain forest or wet sclerophyll forest (WSFW) and into tropical forests, is well reconstructed. The transitions from xerophytic through sclerophyll woodlands and open forests to closed-canopy forests, which reflect the gradient in plant available moisture from the continental interior towards the coast, are reconstructed with less geographical precision but nevertheless the broad-scale pattern emerges. 2. Differences between the modern and mid-Holocene vegetation patterns in mainland Australia are comparatively small and reflect changes in moisture availability rather than temperature. In south-eastern Australia some sites show a shift towards more moisture-stressed vegetation in the mid-Holocene with xerophytic woods/scrub and temperate sclerophyll woodland and shrubland at sites characterized today by WSFW or warm-temperate rain forest (WTRF). However, sites in the Snowy Mountains, on the Southern Tablelands and east of the Great Dividing Range have more moisture-demanding vegetation in the mid-Holocene than today. South-western Australia was slightly drier than today. The single site in north-western Australia also shows conditions drier than today in the mid-Holocene. Changes in the tropics are also comparatively small, but the presence of WTRF and tropical deciduous broadleaf forest and woodland in the mid-Holocene, in sites occupied today by cool-temperate rain forest, indicate warmer conditions. 3. Expansion of xerophytic vegetation in the south and tropical deciduous broadleaf forest and woodland in the north indicate drier conditions across mainland Australia at the LGM. None of these changes are informative about the degree of cooling. However the evidence from the tropics, showing lowering of the treeline and forest belts, indicates that conditions were between 1 and 9 °C (depending on elevation) colder. The encroachment of tropical deciduous broadleaf forest and woodland into lowland evergreen broadleaf forest implies greater aridity. Main conclusions  This study provides the first continental-scale reconstruction of mid-Holocene and LGM vegetation patterns from Australia, Southeast Asia and the Pacific (SEAPAC region) using an objective biomization scheme. These data will provide a benchmark for evaluation of palaeoclimate simulations within the framework of the Palaeoclimate Modelling Intercomparison Project.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ship is the dominant element in the visual culture of the South Scandinavian Bronze Age, appearing in several different media, including rock carvings, decorated metalwork and above-ground monuments. Discussion has divided between those scholars who interpret this imagery in terms of long-distance exchange networks and those who emphasize its more local significance, including its deployment in mortuary ritual. A strikingly similar system is identified in Southeast Asia and part of Melanesia and can be interpreted through archaeological and ethnographic sources, but in this case there is no need to distinguish between 'practical' and 'symbolic' interpretations of the depictions of ships. This paper summarizes the evidence from this region and suggests that it can offer a fruitful source of comparison for archaeologists working in northern Europe.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The impact of the Tibetan Plateau uplift on the Asian monsoons and inland arid climates is an important but also controversial question in studies of paleoenvironmental change during the Cenozoic. In order to achieve a good understanding of the background for the formation of the Asian monsoons and arid environments, it is necessary to know the characteristics of the distribution of monsoon regions and arid zones in Asia before the plateau uplift. In this study, we discuss in detail the patterns of distribution of the Asian monsoon and arid regions before the plateau uplift on the basis of modeling results without topography from a global coupled atmosphere–ocean general circulation model, compare our results with previous simulation studies and available biogeological data, and review the uncertainties in the current knowledge. Based on what we know at the moment, tropical monsoon climates existed south of 20°N in South and Southeast Asia before the plateau uplift, while the East Asian monsoon was entirely absent in the extratropics. These tropical monsoons mainly resulted from the seasonal shifts of the Inter-Tropical Convergence Zone. There may have been a quasi-monsoon region in central-southern Siberia. Most of the arid regions in the Asian continent were limited to the latitudes of 20–40°N, corresponding to the range of the subtropical high pressure year-around. In the meantime, the present-day arid regions located in the relatively high latitudes in Central Asia were most likely absent before the plateau uplift. The main results from the above modeling analyses are qualitatively consistent with the available biogeological data. These results highlight the importance of the uplift of the Tibetan Plateau in the Cenozoic evolution of the Asian climate pattern of dry–wet conditions. Future studies should be focused on effects of the changes in land–sea distribution and atmospheric CO2 concentrations before and after the plateau uplift, and also on cross-comparisons between numerical simulations and geological evidence, so that a comprehensive understanding of the evolution of the Cenozoic paleoenvironments in Asia can be achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reviews the meteorology of the Western Indian Ocean and uses a state–of–the–art atmospheric general circulation model to investigate the influence of the East African Highlands on the climate of the Indian Ocean and its surrounding regions. The new 44–year re–analysis produced by the European Centre for Medium range Weather Forecasts (ECMWF) has been used to construct a new climatology of the Western Indian Ocean. A brief overview of the seasonal cycle of the Western Indian Ocean is presented which emphasizes the importance of the geography of the Indian Ocean basin for controlling the meteorology of the Western Indian Ocean. The principal modes of inter–annual variability are described, associated with El Niño and the Indian Ocean Dipole or Zonal Mode, and the basic characteristics of the subseasonal weather over the Western Indian Ocean are presented, including new statistics on cyclone tracks derived from the ECMWF re–analyses. Sensitivity experiments, in which the orographic effects of East Africa are removed, have shown that the East African Highlands, although not very high, play a significant role in the climate of Africa, India and Southeast Asia, and in the heat, salinity and momentum forcing of the Western Indian Ocean. The hydrological cycle over Africa is systematically enhanced in all seasons by the presence of the East African Highlands, and during the Asian summer monsoon there is a major redistribution of the rainfall across India and Southeast Asia. The implied impact of the East African Highlands on the ocean is substantial. The East African Highlands systematically freshen the tropical Indian Ocean, and act to focus the monsoon winds along the coast, leading to greater upwelling and cooler sea–surface temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The regional population of the Grey-headed Fish-Eagle (Ichthyophaga ichthyaetus) in Southeast Asia is thought to be in recent decline and its conservation status Linder threat. We undertook a systematic survey in a flooded swamp forest at the Tonle Sap Lake in Cambodia and recorded 32 pairs of eagles in an area of approximately 80 km(2). Three species of water snakes were identified as eagle prey items, previously unrecorded for this species. We suggest that this eagle population has significant regional importance and discuss potential anthropogenic threats to population stability, such as water snake harvesting and construction Of upstream hydropower dams.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The clouded leopard, Neofelis nebulosa, is an endangered semiarboreal felid with a wide distribution in tropical forests of southern and southeast Asia, including the islands of Sumatra and Borneo in the Indonesian archipelago [1]. In common with many larger animal species, it displays morphological variation within its wide geographical range and is currently regarded as comprising of up to four subspecies [2-4]. It is widely recognized that taxonomic designation has a major impact on conservation planning and action [5-8]. Given that the last taxonomic revision was made over 50 years ago [2], a more detailed examination of geographical variation is needed. We describe here the results of a morphometric analysis of the pelages of 57 clouded leopards sampled throughout the species' range. We conclude that there are two distinct morphological groups, which differ primarily in the size of their cloud markings. These results are supported by a recent genetic analysis [9]. On that basis, we give diagnoses for the distinction of two species, one in mainland Asia (N. nebulosa) and the other in Indonesia (N. diardi). The implications for conservation that arise from this new taxonomic arrangement are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fifty years ago Carl Sauer suggested, controversially and on the basis of theory rather than evidence, that Southeast Asia was the source area for agriculture throughout the Old World, including the Pacific. Since then, the archaeobotanical record (macroscopic and microscopic) from the Pacific islands has increased, leading to suggestions, also still controversial, that Melanesia was a center of origin of agriculture independent of South-east Asia, based on tree fruits and nuts and vegetatively propagated starchy staples. Such crops generally lack morphological markers of domestication, so exploitation, cultivation and domestication cannot easily be distinguished in the archaeological record. Molecular studies involving techniques such as chromosome painting, DNA fingerprinting and DNA sequencing, can potentially complement the archaeological record by suggesting where species which were spread through the Pacific by man originated and by what routes they attained their present distributions. A combination of archaeobotanical and molecular studies should therefore eventually enable the rival claims of Melanesia versus South-east Asia as independent centers of invention of agriculture to be assessed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dependence of the annual mean tropical precipitation on horizontal resolution is investigated in the atmospheric version of the Hadley Centre General Environment Model (HadGEM1). Reducing the grid spacing from about 350 km to 110 km improves the precipitation distribution in most of the tropics. In particular, characteristic dry biases over South and Southeast Asia including the Maritime Continent as well as wet biases over the western tropical oceans are reduced. The annual-mean precipitation bias is reduced by about one third over the Maritime Continent and the neighbouring ocean basins associated with it via the Walker circulation. Sensitivity experiments show that much of the improvement with resolution in the Maritime Continent region is due to the specification of better resolved surface boundary conditions (land fraction, soil and vegetation parameters) at the higher resolution. It is shown that in particular the formulation of the coastal tiling scheme may cause resolution sensitivity of the mean simulated climate. The improvement in the tropical mean precipitation in this region is not primarily associated with the better representation of orography at the higher resolution, nor with changes in the eddy transport of moisture. Sizeable sensitivity to changes in the surface fields may be one of the reasons for the large variation of the mean tropical precipitation distribution seen across climate models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BIOME 6000 is an international project to map vegetation globally at mid-Holocene (6000 14C yr bp) and last glacial maximum (LGM, 18,000 14C yr bp), with a view to evaluating coupled climate-biosphere model results. Primary palaeoecological data are assigned to biomes using an explicit algorithm based on plant functional types. This paper introduces the second Special Feature on BIOME 6000. Site-based global biome maps are shown with data from North America, Eurasia (except South and Southeast Asia) and Africa at both time periods. A map based on surface samples shows the method’s skill in reconstructing present-day biomes. Cold and dry conditions at LGM favoured extensive tundra and steppe. These biomes intergraded in northern Eurasia. Northern hemisphere forest biomes were displaced southward. Boreal evergreen forests (taiga) and temperate deciduous forests were fragmented, while European and East Asian steppes were greatly extended. Tropical moist forests (i.e. tropical rain forest and tropical seasonal forest) in Africa were reduced. In south-western North America, desert and steppe were replaced by open conifer woodland, opposite to the general arid trend but consistent with modelled southward displacement of the jet stream. The Arctic forest limit was shifted slighly north at 6000 14C yr bp in some sectors, but not in all. Northern temperate forest zones were generally shifted greater distances north. Warmer winters as well as summers in several regions are required to explain these shifts. Temperate deciduous forests in Europe were greatly extended, into the Mediterranean region as well as to the north. Steppe encroached on forest biomes in interior North America, but not in central Asia. Enhanced monsoons extended forest biomes in China inland and Sahelian vegetation into the Sahara while the African tropical rain forest was also reduced, consistent with a modelled northward shift of the ITCZ and a more seasonal climate in the equatorial zone. Palaeobiome maps show the outcome of separate, independent migrations of plant taxa in response to climate change. The average composition of biomes at LGM was often markedly different from today. Refugia for the temperate deciduous and tropical rain forest biomes may have existed offshore at LGM, but their characteristic taxa also persisted as components of other biomes. Examples include temperate deciduous trees that survived in cool mixed forest in eastern Europe, and tropical evergreen trees that survived in tropical seasonal forest in Africa. The sequence of biome shifts during a glacial-interglacial cycle may help account for some disjunct distributions of plant taxa. For example, the now-arid Saharan mountains may have linked Mediterranean and African tropical montane floras during enhanced monsoon regimes. Major changes in physical land-surface conditions, shown by the palaeobiome data, have implications for the global climate. The data can be used directly to evaluate the output of coupled atmosphere-biosphere models. The data could also be objectively generalized to yield realistic gridded land-surface maps, for use in sensitivity experiments with atmospheric models. Recent analyses of vegetation-climate feedbacks have focused on the hypothesized positive feedback effects of climate-induced vegetation changes in the Sahara/Sahel region and the Arctic during the mid-Holocene. However, a far wider spectrum of interactions potentially exists and could be investigated, using these data, both for 6000 14C yr bp and for the LGM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance of including a more realistic treatment of aerosol–cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex aerosol schemes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In September 2013, the 5th Assessment Report (5AR) of the International Panel on Climate Change (IPCC) has been released. Taking the 5AR cli-mate change scenarios into account, the World Bank published an earli-er report on climate change and its impacts on selected hot spot re-gions, including Southeast Asia. Currently, dynamical and statistical-dynamical downscaling efforts are underway to obtain higher resolution and more robust regional climate change projections for tropical South-east Asia, including Vietnam. Such initiatives are formalized under the World Meteorological Organization (WMO) Coordinated Regional Dynamic Downscaling Experiment (CORDEX) East Asia and Southeast Asia and also take place in climate change impact projects such as the joint Vietnam-ese-German project “Environmental and Water Protection Technologies of Coastal Zones in Vietnam (EWATEC-COAST)”. In this contribution, the lat-est assessments for changes in temperature, precipitation, sea level, and tropical cyclones (TCs) under the 5AR Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 are reviewed. Special emphasis is put on changes in extreme events like heat waves and/or heavy precipita-tion. A regional focus is Vietnam south of 16°N. A continued increase in mean near surface temperature is projected, reaching up to 5°C at the end of this century in northern Vietnam un-der the high greenhouse-gas forcing scenario RCP8.5. Overall, project-ed changes in annual precipitation are small, but there is a tendency of more rainfall in the boreal winter dry season. Unprecedented heat waves and an increase in extreme precipitation events are projected by both global and regional climate models. Globally, TCs are projected to decrease in number, but an increase in intensity of peak winds and rain-fall in the inner core region is estimated. Though an assessment of changes in land-falling frequency in Vietnam is uncertain due to difficul-ties in assessing changes in TC tracks, some work indicates a reduction in the number of land-falling TCs in Vietnam. Sea level may rise by 75-100 cm until the end of the century with the Vietnamese coastline experienc-ing 10-15% higher rise than on global average. Given the large rice and aquaculture production in the Mekong and Red River Deltas, that are both prone to TC-related storm surges and flooding, this poses a challenge to foodsecurity and protection of coastal population and assets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Arboviruses have overlapping geographical distributions and can cause symptoms that coincide with more common infections. Therefore, arbovirus infections are often neglected by travel diagnostics. Here, we assessed the potential of syndrome-based approaches for diagnosis and surveillance of neglected arboviral diseases in returning travelers. Method To map the patients high at risk of missed clinical arboviral infections we compared the quantity of all arboviral diagnostic requests by physicians in the Netherlands, from 2009 through 2013, with a literature-based assessment of the travelers’ likely exposure to an arbovirus. Results 2153 patients, with travel and clinical history were evaluated. The diagnostic assay for dengue virus (DENV) was the most commonly requested (86%). Of travelers returning from Southeast Asia with symptoms compatible with chikungunya virus (CHIKV), only 55% were tested. For travelers in Europe, arbovirus diagnostics were rarely requested. Over all, diagnostics for most arboviruses were requested only on severe clinical presentation. Conclusion Travel destination and syndrome were used inconsistently for triage of diagnostics, likely resulting in vast under-diagnosis of arboviral infections of public health significance. This study shows the need for more awareness among physicians and standardization of syndromic diagnostic algorithms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence on the summer flow over Asia of both the orographic and thermal forcing of the Tibetan Plateau is investigated using a sequence of idealised experiments with a global primitive equation model. The zonally averaged flow is prescribed and both realistic and idealised orography and heating are used. There is some similarity between the responses to the two forcings when applied separately. The upper tropospheric Tibetan anticyclone is predominantly forced by the heating but also weakly by the orography. Below this, both forcings tend to give air descending in an equatorward anticyclonic circulation down the isentropes to the west and rising in a similar poleward circulation to the east. However the heating-only response has a strong ascending southwesterly flow that is guided around the south and south-east of the orography when it is included. On the northern side, the westerly flow over the orography gives ascent on the upslope and descent on the downslope. It is found that heating over the Plateau leads to a potential vorticity (PV) minimum and that if it is sufficiently strong the flow is unstable, producing a quasi-biweekly oscillation. During this oscillation the Tibetan anticyclone changes between a single centre over the southwestern side of the Plateau and a split/double structure with centres over China and the Middle East. These characteristics are similar to observed variability in the region. Associated with this quasi-biweekly oscillation are significant variations in the strength of the ascent over the Plateau and the Rossby wave pattern over the North Pacific. The origin of the variability is instability associated with the zonally extended potential vorticity PV minimum on a θ-surface, as proposed by Hsu and Plumb (2000). This minimum is due to the tendency to reduce the PV above the heating over the Plateau and to advection by the consequent anticyclone of high PV around from the east and low PV to the west. The deep convection to the south and southeast of the Plateau tends to suppress the quasi-biweekly oscillation because the low PV produced above it acts to reduce the meridional PV gradient reversal. The occurrence of the oscillation depends on the relative magnitude of the heating in the two regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A statistical–dynamical downscaling (SDD) approach is applied to determine present day and future high-resolution rainfall distributions in the catchment of the river Aksu at the southern slopes of the Tienshan Mountains, Central Asia. First, a circulation weather type (CWT) classification is employed to define typical lower atmospheric flow regimes from ERA-40 reanalysis data. Selected representatives of each CWT are dynamically downscaled with the regional climate model COSMO-CLM 4.8 at a horizontal grid resolution of 0.0625°, using the ERA-40 reanalysis data as boundary conditions. Finally, the simulated representatives are recombined to obtain a high-resolution rainfall climatology for present day climate. The methodology is also applied to ensemble simulations of three different scenarios of the global climate model ECHAM5/MPI-OM1 to derive projections of rainfall changes until 2100. Comparisons of downscaled seasonal and annual rainfall with observational data suggest that the statistical–dynamical approach is appropriate to capture the observed present-day precipitation climatology over the low lands and the first elevations of the Tienshan Mountains. On the other hand, a strong bias is found at higher altitudes, where precipitation is clearly underestimated by SDD. The application of SDD to the ECHAM5/MPI-OM1 ensemble reveals that precipitation changes by the end of the 21st century depend on the season. While for autumn an increase of seasonal precipitation is found for all simulations, a decrease in precipitation is obtained during winter for most parts of the Aksu catchment. The spread between different ECHAM5/MPI-OM1 ensemble members is strongest in spring, where trends of opposite sign are found. The largest changes in rainfall are simulated for the summer season, which also shows the most pronounced spatial heterogeneity. Most ECHAM5/MPI-OM1 realizations indicate a decrease of annual precipitation over large parts of the Tienshan, and an increase restricted to the southeast of the study area. These results provide a good basis for downscaling present-day and future rainfall distributions for hydrological purposes.