7 resultados para Terapia antisense

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Serial Analysis of Gene Expression (SAGE) is a powerful tool for genome-wide transcription studies. Unlike microarrays, it has the ability to detect novel forms of RNA such as alternatively spliced and antisense transcripts, without the need for prior knowledge of their existence. One limitation of using SAGE on an organism with a complex genome and lacking detailed sequence information, such as the hexaploid bread wheat Triticum aestivum, is accurate annotation of the tags generated. Without accurate annotation it is impossible to fully understand the dynamic processes involved in such complex polyploid organisms. Hence we have developed and utilised novel procedures to characterise, in detail, SAGE tags generated from the whole grain transcriptome of hexaploid wheat. RESULTS: Examination of 71,930 Long SAGE tags generated from six libraries derived from two wheat genotypes grown under two different conditions suggested that SAGE is a reliable and reproducible technique for use in studying the hexaploid wheat transcriptome. However, our results also showed that in poorly annotated and/or poorly sequenced genomes, such as hexaploid wheat, considerably more information can be extracted from SAGE data by carrying out a systematic analysis of both perfect and "fuzzy" (partially matched) tags. This detailed analysis of the SAGE data shows first that while there is evidence of alternative polyadenylation this appears to occur exclusively within the 3' untranslated regions. Secondly, we found no strong evidence for widespread alternative splicing in the developing wheat grain transcriptome. However, analysis of our SAGE data shows that antisense transcripts are probably widespread within the transcriptome and appear to be derived from numerous locations within the genome. Examination of antisense transcripts showing sequence similarity to the Puroindoline a and Puroindoline b genes suggests that such antisense transcripts might have a role in the regulation of gene expression. CONCLUSION: Our results indicate that the detailed analysis of transcriptome data, such as SAGE tags, is essential to understand fully the factors that regulate gene expression and that such analysis of the wheat grain transcriptome reveals that antisense transcripts maybe widespread and hence probably play a significant role in the regulation of gene expression during grain development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490 bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490 bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent emergence of novel pathogenic human and animal coronaviruses has highlighted the need for antiviral therapies that are effective against a spectrum of these viruses. We have used several strains of murine hepatitis virus (MHV) in cell culture and in vivo in mouse models to investigate the antiviral characteristics of peptide-conjugated antisense phosphorodiamidate morpholino oligomers (P-PMOs). Ten P-PMOs directed against various target sites in the viral genome were tested in cell culture, and one of these (5TERM), which was complementary to the 5' terminus of the genomic RNA, was effective against six strains of MHV. Further studies were carried out with various arginine-rich peptides conjugated to the 5TERM PMO sequence in order to evaluate efficacy and toxicity and thereby select candidates for in vivo testing. In uninfected mice, prolonged P-PMO treatment did not result in weight loss or detectable histopathologic changes. 5TERM P-PMO treatment reduced viral titers in target organs and protected mice against virus-induced tissue damage. Prophylactic 5TERM P-PMO treatment decreased the amount of weight loss associated with infection under most experimental conditions. Treatment also prolonged survival in two lethal challenge models. In some cases of high-dose viral inoculation followed by delayed treatment, 5TERM P-PMO treatment was not protective and increased morbidity in the treated group, suggesting that P-PMO may cause toxic effects in diseased mice that were not apparent in the uninfected animals. However, the strong antiviral effect observed suggests that with further development, P-PMO may provide an effective therapeutic approach against a broad range of coronavirus infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small interfering RNA (siRNA), antisense oligonucleotides (ODNs), ribozymes and DNAzymes have emerged as sequence-specific inhibitors of gene expression that may have therapeutic potential in the treatment of a wide range of diseases. Due to their rapid degradation in vivo, the efficacy of naked gene silencing nucleic acids is relatively short lived. The entrapment of these nucleic acids within biodegradable sustained-release delivery systems may improve their stability and reduce the doses required for efficacy. In this study, we have evaluated the potential in vitro and in vivo use of biodegradable poly (d,l-lactide-co-glycolide) copolymer (PLGA) microspheres as sustained delivery devices for ODNs, ribozyme, siRNA and DNA enzymes. In addition, we investigated the release of ODN conjugates bearing 5′-end lipophilic groups. The in vitro sustained release profiles of microsphere-entrapped nucleic acids were dependent on variables such as the type of nucleic acid used, the nature of the lipophilic group, and whether the nucleic acid used was single or double stranded. For in vivo studies, whole body autoradiography was used to monitor the bio-distribution of either free tritium-labelled ODN or that entrapped within PLGA microspheres following subcutaneous administration in Balb-c mice. The majority of the radioactivity associated with free ODN was eliminated within 24 h whereas polymer-released ODN persisted in organs and at the site of administration even after seven days post-administration. Polymer microsphere released ODN exhibited a similar tissue and cellular tropism to the free ODN. Micro-autoradiography analyses of the liver and kidneys showed similar bio-distribution for polymer-released and free ODNs with the majority of radioactivity being concentrated in the proximal convoluted tubules of the kidney and in the Kupffer cells of the liver. These findings suggest that biodegradable PLGA microspheres offer a method for improving the in vivo sustained delivery of gene silencing nucleic acids, and hence are worthy of further investigation as delivery systems for these macromolecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myostatin is a negative regulator of muscle mass, and several strategies are being developed to knockdown its expression to improve muscle-wasting conditions. Strategies using antimyostatin-blocking antibodies, inhibitory-binding partners, signal transduction blockers, and RNA interference system (RNAi)-based knockdown have yielded promising results and increased muscle mass in experimental animals. These approaches have, however, a number of disadvantages such as transient effects or adverse immune complications. We report here the use of antisense oligonucleotides (AOs) to manipulate myostatin pre-mRNA splicing and knockdown myostatin expression. Both 2’O-methyl phosphorothioate RNA (2’OMePS) and phosphorodiamidate morpholino oligomers (PMO) led to efficient exon skipping in vitro and in vivo and knockdown of myostatin at the transcript level. The substantial myostatin exon skipping observed after systemic injection of Vivo-PMO into normal mice led to a significant increase in soleus muscle mass as compared to the controls injected with normal saline suggesting that this approach could be feasible to ameliorate muscle-wasting pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The invention provides antisense antiviral compounds and methods of their use and production in inhibition of growth of viruses of the Arenaviridae family and in the treatment of a viral infection. The compounds are particularly useful in the treatment of Arenavirus infection in a mammal. The antisense antiviral compounds are substantially uncharged morpholino oligonucleotides have a sequence of 12-40 subunits, including at least 12 subunits having a targeting sequence that is complementary to a region associated with viral RNA sequences within a 19 nucleotide region of the 5′-terminal regions of the viral RNA, viral complementary RNA and/or mRNA identified by SEQ ID NO:1.