5 resultados para Tensile ruptures
em CentAUR: Central Archive University of Reading - UK
Resumo:
We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53–79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles (Cotton, J. R., Zioupos, P., Winwood, K., and Taylor, M., 2003, "Analysis of Creep Strain During Tensile Fatigue of Cortical Bone," J. Biomech. 36, pp. 943–949). In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the "normalized stress" level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.
Resumo:
During fatigue tests of cortical bone specimens, at the unload portion of the cycle (zero stress) non-zero strains occur and progressively accumulate as the test progresses. This non-zero strain is hypothesised to be mostly, if not entirely, describable as creep. This work examines the rate of accumulation of this strain and quantifies its stress dependency. A published relationship determined from creep tests of cortical bone (Journal of Biomechanics 21 (1988) 623) is combined with knowledge of the stress history during fatigue testing to derive an expression for the amount of creep strain in fatigue tests. Fatigue tests on 31 bone samples from four individuals showed strong correlations between creep strain rate and both stress and “normalised stress” (σ/E) during tensile fatigue testing (0–T). Combined results were good (r2=0.78) and differences between the various individuals, in particular, vanished when effects were examined against normalised stress values. Constants of the regression showed equivalence to constants derived in creep tests. The universality of the results, with respect to four different individuals of both sexes, shows great promise for use in computational models of fatigue in bone structures.
Resumo:
Despite recent research exploring the elastic properties of avian keratins, data on failure properties are less common in the literature. In this paper we present data on the failure properties and moduli of both avian feather and claw keratin in tension and the modulus of claw keratin in compression. Increased water content acts to decrease stiffness and strength but to increase strain at failure. The modulus of claw did not differ significantly when tested under tension and compression.