48 resultados para Tendencies
em CentAUR: Central Archive University of Reading - UK
Resumo:
An isentropic potential vorticity (PV) budget analysis is employed to examine the role of synoptic transients, advection, and nonconservative processes as forcings for the evolution of the low-frequency PV anomalies locally and those associated with the North Atlantic Oscillation (NAO) and the Pacific–North American (PNA) pattern. Specifically, the rate of change of the low-frequency PV is expressed as a sum of tendencies due to divergence of eddy transport, advection by the low-frequency flow (hereafter referred to as advection), and the residual nonconservative processes. The balance between the variances and covariances of these terms is illustrated using a novel vector representation. It is shown that for most locations, as well as for the PNA pattern, the PV variability is dominantly driven by advection. The eddy forcing explains a small amount of the tendency variance. For the NAO, the role of synoptic eddy fluxes is found to be stronger, explaining on average 15% of the NAO tendency variance. Previous studies have not assessed quantitively how the various forcings balance the tendency. Thus, such studies may have overestimated the role of eddy fluxes for the evolution of teleconnections by examining, for example, composites and regressions that indicate maintenance, rather than evolution driven by the eddies. The authors confirm this contrasting view by showing that during persistent blocking (negative NAO) episodes the eddy driving is relatively stronger.
Resumo:
A bias towards attributing hostile intent to others has been linked to aggression. In an adolescent sample, we investigated whether peer group homophily exists in the tendency towards attributing hostile intent. We assessed hostile attribution tendencies and self-reported aggressive behaviours in a normative sample of 910 adolescents, and computed average peer group scores based on nominated friend scores. Results indicated that adolescents showed significant correlations between their own level of hostile attributions and that of their peer group. Further analyses indicated that this effect occurred specifically in reciprocal friendships, and was retained even once own and peer group level of aggression were controlled.
Resumo:
BACKGROUND: Sex differences are present in many neuropsychiatric conditions that affect emotion and approach-avoidance behavior. One potential mechanism underlying such observations is testosterone in early development. Although much is known about the effects of testosterone in adolescence and adulthood, little is known in humans about how testosterone in fetal development influences later neural sensitivity to valenced facial cues and approach-avoidance behavioral tendencies. METHODS: With functional magnetic resonance imaging we scanned 25 8-11-year-old children while viewing happy, fear, neutral, or scrambled faces. Fetal testosterone (FT) was measured via amniotic fluid sampled between 13 and 20 weeks gestation. Behavioral approach-avoidance tendencies were measured via parental report on the Sensitivity to Punishment and Sensitivity to Rewards questionnaire. RESULTS: Increasing FT predicted enhanced selectivity for positive compared with negatively valenced facial cues in reward-related regions such as caudate, putamen, and nucleus accumbens but not the amygdala. Statistical mediation analyses showed that increasing FT predicts increased behavioral approach tendencies by biasing caudate, putamen, and nucleus accumbens but not amygdala to be more responsive to positive compared with negatively valenced cues. In contrast, FT was not predictive of behavioral avoidance tendencies, either through direct or neurally mediated paths. CONCLUSIONS: This work suggests that testosterone in humans acts as a fetal programming mechanism on the reward system and influences behavioral approach tendencies later in life. As a mechanism influencing atypical development, FT might be important across a range of neuropsychiatric conditions that asymmetrically affect the sexes, the reward system, emotion processing, and approach behavior.
An investigation of the surface pressure tendencies and a vorticity budget for a cyclone development
Resumo:
This article describes a novel algorithmic development extending the contour advective semi-Lagrangian model to include nonconservative effects. The Lagrangian contour representation of finescale tracer fields, such as potential vorticity, allows for conservative, nondiffusive treatment of sharp gradients allowing very high numerical Reynolds numbers. It has been widely employed in accurate geostrophic turbulence and tracer advection simulations. In the present, diabatic version of the model the constraint of conservative dynamics is overcome by including a parallel Eulerian field that absorbs the nonconservative ( diabatic) tendencies. The diabatic buildup in this Eulerian field is limited through regular, controlled transfers of this field to the contour representation. This transfer is done with a fast newly developed contouring algorithm. This model has been implemented for several idealized geometries. In this paper a single-layer doubly periodic geometry is used to demonstrate the validity of the model. The present model converges faster than the analogous semi-Lagrangian models at increased resolutions. At the same nominal spatial resolution the new model is 40 times faster than the analogous semi-Lagrangian model. Results of an orographically forced idealized storm track show nontrivial dependency of storm-track statistics on resolution and on the numerical model employed. If this result is more generally applicable, this may have important consequences for future high-resolution climate modeling.
Resumo:
Egger (2008) constructs some idealised experiments to test the usefulness of piecewise potential vorticity inversion (PPVI) in the diagnosis of Rossby wave dynamics and baroclinic development. He concludes that, ``PPVI does not help us to understand the dynamics of linear Rossby waves. It provides local tendencies of the streamfunction which are unrelated to the true ones. The same way, the motion of baroclinic waves in shear flow cannot be understood by using PPVI. Moreover, the effect of boundary temperatures as determined by PPVI is unrelated to the flow evolution.'' He goes further in arguing that we should not consider velocities as ``induced'' by PV anomalies defined by carving up the global domain. However, these conclusions partly reflect the limitations of his idealised experiments and the manner in which the PV components were partitioned from one another.
Resumo:
This paper focuses on processes of studentification, and explores the link between higher education students and contemporary provincial gentrification. The paper provides two main, interconnected, contributions to advance debates on gentrification. First, the discussion appeals for wider temporal analyses of the lifecourses of gentrifiers to trace the formation and reconfiguration of the cultural and residential predilections of gentrifiers across time and space. With this in mind, it is argued that there is a need to rethink the role of students within the constraints of third-wave gentrification, and to consider how 'student experiences' may influence the current and future residential geographies of young gentrifiers within provincial urban locations. Drawing upon recent studies of studentification, it is asserted that this profound expression of urban change is indicative of gentrification. Second, the paper advances Clark's recent call to extend the term gentrification to embrace the wider dominant hallmarks and tendencies of urban transformations. Controversially, in light of a deepening institutionalisation of gentrification, we contend that gentrification can be most effectively employed at a revised conceptual level to act as a referent of the common outcomes of a breadth of processes of change.
Resumo:
There is a growing interest in using stochastic parametrizations in numerical weather and climate prediction models. Previously, Palmer (2001) outlined the issues that give rise to the need for a stochastic parametrization and the forms such a parametrization could take. In this article a method is presented that uses a comparison between a standard-resolution version and a high-resolution version of the same model to gain information relevant for a stochastic parametrization in that model. A correction term that could be used in a stochastic parametrization is derived from the thermodynamic equations of both models. The origin of the components of this term is discussed. It is found that the component related to unresolved wave-wave interactions is important and can act to compensate for large parametrized tendencies. The correction term is not proportional to the parametrized tendency. Finally, it is explained how the correction term could be used to give information about the shape of the random distribution to be used in a stochastic parametrization. Copyright © 2009 Royal Meteorological Society
Resumo:
Two fundamental perspectives on the dynamics of midlatitude weather systems are provided by potential vorticity (PV) and the omega equation. The aim of this paper is to investigate the link between the two perspectives, which has so far received very little attention in the meteorological literature. It also aims to give a quantitative basis for discussion of quasi-geostrophic vertical motion in terms of components associated with system movement, maintaining a constant thermal structure, and with the development of that structure. The former links with the isentropic relative-flow analysis technique. Viewed in a moving frame of reference, the measured development of a system depends on the velocity of that frame of reference. The requirement that the development should be a minimum provides a quantitative method for determining the optimum system velocity. The component of vertical velocity associated with development is shown to satisfy an omega equation with forcing determined from the relative advection of interior PV and boundary temperature. The analysis carries through in the presence of diabatic heating provided the omega equation forcing is based on the interior PV and boundary thermal tendencies, including the heating effect. The analysis is shown to be possible also at the level of the semi-geostrophic approximation. The analysis technique is applied to a number of idealized problems that can be considered to be building blocks for midlatitude synoptic-scale dynamics. They focus on the influences of interior PV, boundary temperature, an interior boundary, baroclinic instability associated with two boundaries, and also diabatic heating. In each case, insights yielded by the new perspective are sought into the dynamical behaviour, especially that related to vertical motion. Copyright © 2003 Royal Meteorological Society
Resumo:
The diurnal cycle of tropical convection and its relationship to the atmospheric tides is investigated using an aquaplanet GCM. The diurnal and semidiurnal harmonics of precipitation are both found to contribute significantly to the total diurnal variability of precipitation in the model, which is broadly consistent with observations of the diurnal cycle of convection over the open ocean. The semidiurnal tide is found to be the dominant forcing for the semidiurnal harmonic of precipitation. In contrast the diurnal tide plays only a small role in forcing the diurnal harmonic of precipitation, which is dominated by the variations in shortwave and longwave heating. In both the diurnal and semidiurnal harmonics, the feedback onto the convection by the humidity tendencies due to the convection is found to be important in determining the phase of the harmonics. Further experiments show that the diurnal cycle of precipitation is sensitive to the choice of closure in the convection scheme. While the surface pressure signal of the simulated atmospheric tides in the model agree well with both theory and observations in their magnitude and phase, sensitivity experiments suggest that the role of the stratospheric ozone in forcing the semidiurnal tide is much reduced compared to theoretical predictions. Furthermore, the influence of the cloud radiative effects seems small. It is suggested that the radiative heating profile in the troposphere, associated primarily with the water vapor distribution, is more important than previously thought for driving the semidiurnal tide. However, this result may be sensitive to the vertical resolution and extent of the model.
Resumo:
Scalar-flux budgets have been obtained from large-eddy simulations (LESs) of the cumulus-capped boundary layer. Parametrizations of the terms in the budgets are discussed, and two parametrizations for the transport term in the cloud layer are proposed. It is shown that these lead to two models for scalar transports by shallow cumulus convection. One is equivalent to the subsidence detrainment form of convective tendencies obtained from mass-flux parametrizations of cumulus convection. The second is a flux-gradient relationship that is similar in form to the non-local parametrizations of turbulent transports in the dry-convective boundary layer. Using the fluxes of liquid-water potential temperature and total water content from the LES, it is shown that both models are reasonable diagnostic relations between fluxes and the vertical gradients of the mean fields. The LESs used in this study are for steady-state convection and it is possible to treat the fluxes of conserved thermodynamic variables as independent, and ignore the effects of condensation. It is argued that a parametrization of cumulus transports in a model of the cumulus-capped boundary layer should also include an explicit representation of condensation. A simple parametrization of the liquid-water flux in terms of conserved variables is also derived.
Resumo:
This article examines the politics of place in relation to legal mobilization by the anti-nuclear movement. It examines two case examples - citizens' weapons inspections and civil disobedience strategies - which have involved the movement drawing upon the law in particular spatial contexts. The article begins by examining a number of factors which have been employed in recent social movement literature to explain strategy choice, including ideology, resources, political and legal opportunity, and framing. It then proceeds to argue that the issues of scale, space, and place play an important role in relation to framing by the movement in the two case examples. Both can be seen to involve scalar reframing, with the movement attempting to resist localizing tendencies and to replace them with a global frame. Both also involve an attempt to reframe the issue of nuclear weapons away from the contested frame of the past (unilateral disarmament) towards the more universal and widely accepted frame of international law.
Resumo:
Microsatellite lengths change over evolutionary time through a process of replication slippage. A recently proposed model of this process holds that the expansionary tendencies of slippage mutation are balanced by point mutations breaking longer microsatellites into smaller units and that this process gives rise to the observed frequency distributions of uninterrupted microsatellite lengths. We refer to this as the slippage/point-mutation theory. Here we derive the theory's predictions for interrupted microsatellites comprising regions of perfect repeats, labeled segments, separated by dinucleotide interruptions containing point mutations. These predictions are tested by reference to the frequency distributions of segments of AC microsatellite in the human genome, and several predictions are shown not to be supported by the data, as follows. The estimated slippage rates are relatively low for the first four repeats, and then rise initially linearly with length, in accordance with previous work. However, contrary to expectation and the experimental evidence, the inferred slippage rates decline in segments above 10 repeats. Point mutation rates are also found to be higher within microsatellites than elsewhere. The theory provides an excellent fit to the frequency distribution of peripheral segment lengths but fails to explain why internal segments are shorter. Furthermore, there are fewer microsatellites with many segments than predicted. The frequencies of interrupted microsatellites decline geometrically with microsatellite size measured in number of segments, so that for each additional segment, the number of microsatellites is 33.6% less. Overall we conclude that the detailed structure of interrupted microsatellites cannot be reconciled with the existing slippage/point-mutation theory of microsatellite evolution, and we suggest that microsatellites are stabilized by processes acting on interior rather than on peripheral segments.