29 resultados para Temperature--Physiological effect.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Atmospheric CO2 concentration is hypothesized to influence vegetation distribution via tree–grass competition, with higher CO2 concentrations favouring trees. The stable carbon isotope (δ13C) signature of vegetation is influenced by the relative importance of C4 plants (including most tropical grasses) and C3 plants (including nearly all trees), and the degree of stomatal closure – a response to aridity – in C3 plants. Compound-specific δ13C analyses of leaf-wax biomarkers in sediment cores of an offshore South Atlantic transect are used here as a record of vegetation changes in subequatorial Africa. These data suggest a large increase in C3 relative to C4 plant dominance after the Last Glacial Maximum. Using a process-based biogeography model that explicitly simulates 13C discrimination, it is shown that precipitation and temperature changes cannot explain the observed shift in δ13C values. The physiological effect of increasing CO2 concentration is decisive, altering the C3/C4 balance and bringing the simulated and observed δ13C values into line. It is concluded that CO2 concentration itself was a key agent of vegetation change in tropical southern Africa during the last glacial–interglacial transition. Two additional inferences follow. First, long-term variations in terrestrial δ13Cvalues are not simply a proxy for regional rainfall, as has sometimes been assumed. Although precipitation and temperature changes have had major effects on vegetation in many regions of the world during the period between the Last Glacial Maximum and recent times, CO2 effects must also be taken into account, especially when reconstructing changes in climate between glacial and interglacial states. Second, rising CO2 concentration today is likely to be influencing tree–grass competition in a similar way, and thus contributing to the "woody thickening" observed in savannas worldwide. This second inference points to the importance of experiments to determine how vegetation composition in savannas is likely to be influenced by the continuing rise of CO2 concentration.
Resumo:
We performed an ensemble of twelve five-year experiments using a coupled climate-carbon-cycle model with scenarios of prescribed atmospheric carbon dioxide concentration; CO2 was instantaneously doubled or quadrupled at the start of the experiments. Within these five years, climate feedback is not significantly influenced by the effects of climate change on the carbon system. However, rapid changes take place, within much less than a year, due to the physiological effect of CO2 on plant stomatal conductance, leading to adjustment in the shortwave cloud radiative effect over land, due to a reduction in low cloud cover. This causes a 10% enhancement to the radiative forcing due to CO2, which leads to an increase in the equilibrium warming of 0.4 and 0.7 K for doubling and quadrupling. The implications for calibration of energy-balance models are discussed.
Resumo:
The potential of the τ-ω model for retrieving the volumetric moisture content of bare and vegetated soil from dual polarisation passive microwave data acquired at single and multiple angles is tested. Measurement error and several additional sources of uncertainty will affect the theoretical retrieval accuracy. These include uncertainty in the soil temperature, the vegetation structure and consequently its microwave singlescattering albedo, and uncertainty in soil microwave emissivity based on its roughness. To test the effects of these uncertainties for simple homogeneous scenes, we attempt to retrieve soil moisture from a number of simulated microwave brightness temperature datasets generated using the τ-ω model. The uncertainties for each influence are estimated and applied to curves generated for typical scenarios, and an inverse model used to retrieve the soil moisture content, vegetation optical depth and soil temperature. The effect of each influence on the theoretical soil moisture retrieval limit is explored, the likelihood of each sensor configuration meeting user requirements is assessed, and the most effective means of improving moisture retrieval indicated.
Resumo:
The inaugural meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) was held May 3 to May 5 2002 in London, Ontario, Canada. A group of 63 academic and industrial scientists from around the world convened to discuss current issues in the science of probiotics and prebiotics. ISAPP is a non-profit organization comprised of international scientists whose intent is to strongly support and improve the levels of scientific integrity and due diligence associated with the study, use, and application of probiotics and prebiotics. In addition, ISAPP values its role in facilitating communication with the public and healthcare providers and among scientists in related fields on all topics pertinent to probiotics and prebiotics. It is anticipated that such efforts will lead to development of approaches and products that are optimally designed for the improvement of human and animal health and well being. This article is a summary of the discussions, conclusions, and recommendations made by 8 working groups convened during the first ISAPP workshop focusing on the topics of: definitions, intestinal flora, extra-intestinal sites, immune function, intestinal disease, cancer, genetics and genomics, and second generation prebiotics. Humans have evolved in symbiosis with an estimated 1014 resident microorganisms. However, as medicine has widely defined and explored the perpetrators of disease, including those of microbial origin, it has paid relatively little attention to the microbial cells that constitute the most abundant life forms associated with our body. Microbial metabolism in humans and animals constitutes an intense biochemical activity in the body, with profound repercussions for health and disease. As understanding of the human genome constantly expands, an important opportunity will arise to better determine the relationship between microbial populations within the body and host factors (including gender, genetic background, and nutrition) and the concomitant implications for health and improved quality of life. Combined human and microbial genetic studies will determine how such interactions can affect human health and longevity, which communication systems are used, and how they can be influenced to benefit the host. Probiotics are defined as live microorganisms which, when administered in adequate amounts confer a health benefit on the host.1 The probiotic concept dates back over 100 years, but only in recent times have the scientific knowledge and tools become available to properly evaluate their effects on normal health and well being, and their potential in preventing and treating disease. A similar situation exists for prebiotics, defined by this group as non-digestible substances that provide a beneficial physiological effect on the host by selectively stimulating the favorable growth or activity of a limited number of indigenous bacteria. Prebiotics function complementary to, and possibly synergistically with, probiotics. Numerous studies are providing insights into the growth and metabolic influence of these microbial nutrients on health. Today, the science behind the function of probiotics and prebiotics still requires more stringent deciphering both scientifically and mechanistically. The explosion of publications and interest in probiotics and prebiotics has resulted in a body of collective research that points toward great promise. However, this research is spread among such a diversity of organisms, delivery vehicles (foods, pills, and supplements), and potential health targets such that general conclusions cannot easily be made. Nevertheless, this situation is rapidly changing on a number of important fronts. With progress over the past decade on the genetics of lactic acid bacteria and the recent, 2,3 and pending, 4 release of complete genome sequences for major probiotic species, the field is now armed with detailed information and sophisticated microbiological and bioinformatic tools. Similarly, advances in biotechnology could yield new probiotics and prebiotics designed for enhanced or expanded functionality. The incorporation of genetic tools within a multidisciplinary scientific platform is expected to reveal the contributions of commensals, probiotics, and prebiotics to general health and well being and explicitly identify the mechanisms and corresponding host responses that provide the basis for their positive roles and associated claims. In terms of human suffering, the need for effective new approaches to prevent and treat disease is paramount. The need exists not only to alleviate the significant mortality and morbidity caused by intestinal diseases worldwide (especially diarrheal diseases in children), but also for infections at non-intestinal sites. This is especially worthy of pursuit in developing nations where mortality is too often the outcome of food and water borne infection. Inasmuch as probiotics and prebiotics are able to influence the populations or activities of commensal microflora, there is evidence that they can also play a role in mitigating some diseases. 5,6 Preliminary support that probiotics and prebiotics may be useful as intervention in conditions including inflammatory bowel disease, irritable bowel syndrome, allergy, cancer (especially colorectal cancer of which 75% are associated with diet), vaginal and urinary tract infections in women, kidney stone disease, mineral absorption, and infections caused by Helicobacter pylori is emerging. Some metabolites of microbes in the gut may also impact systemic conditions ranging from coronary heart disease to cognitive function, suggesting the possibility that exogenously applied microbes in the form of probiotics, or alteration of gut microecology with prebiotics, may be useful interventions even in these apparently disparate conditions. Beyond these direct intervention targets, probiotic cultures can also serve in expanded roles as live vehicles to deliver biologic agents (vaccines, enzymes, and proteins) to targeted locations within the body. The economic impact of these disease conditions in terms of diagnosis, treatment, doctor and hospital visits, and time off work exceeds several hundred billion dollars. The quality of life impact is also of major concern. Probiotics and prebiotics offer plausible opportunities to reduce the morbidity associated with these conditions. The following addresses issues that emerged from 8 workshops (Definitions, Intestinal Flora, Extra-Intestinal Sites, Immune Function, Intestinal Disease, Cancer, Genomics, and Second Generation Prebiotics), reflecting the current scientific state of probiotics and prebiotics. This is not a comprehensive review, however the study emphasizes pivotal knowledge gaps, and recommendations are made as to the underlying scientific and multidisciplinary studies that will be required to advance our understanding of the roles and impact of prebiotics, probiotics, and the commensal microflora upon health and disease management.
Resumo:
The thermal performance of a horizontal-coupled ground-source heat pump system has been assessed both experimentally and numerically in a UK climate. A numerical simulation of thermal behaviour of the horizontal-coupled heat exchanger for combinations of different ambient air temperatures, wind speeds, refrigerant temperature and soil thermal properties was studied using a validated 2D transient model. The specific heat extraction by the heat exchanger increased with ambient temperature and soil thermal conductivity, however it decreased with increasing refrigerant temperature. The effect of wind speed was negligible.
Resumo:
The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought-tolerant biomes in the tropics. These features are broadly consistent with pollen-based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought-tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low-latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial-interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.
Resumo:
Acid phosphatase production by 12 Hebeloma strains was usually derepressed when inorganic phosphorus in the growth medium was limited, but appeared to be constitutive in some strains. At low temperatures (≤ 12°) arctic strains produced more extracellular and wall-bound acid phosphatase, yet grew more slowly than the temperate strains. We suggest that low growth rates in arctic strains may be a physiological response to cold whereby resources are diverted into carbohydrate accumulation for cryoprotection. At near freezing temperatures, increased extracellular phosphatase production may compensate for a loss of enzyme activity at low temperature and serve to hydrolyse organic phosphorus in frozen soil over winter.
Resumo:
Stratospheric Sounding Units (SSU) on the NOAA operational satellites have been the main source of near global temperature trend data above the lower stratosphere. They have been used extensively for comparison with model-derived trends. The SSU senses in the 15 micron band of CO2 and hence the weighting function is sensitive to changes in CO2 concentrations. The impact of this change in weighting function has been ignored in all recent trend analyses. We show that the apparent trends in global mean brightness temperature due to the change in weighting function vary from about -0.4 K/decade to 0.4 K/decade depending on the altitude sensed by the different SSU channels. For some channels, this apparent trend is of a similar size to the trend deduced from SSU data but ignoring the change in weighting function. In the mid-stratosphere, the revised trends are now significantly more negative and in better agreement with model-calculated trends.
Resumo:
The Olsen method is an indicator of plant-available phosphorus (P). The effect of time and temperature on residual phosphate in soils was measured using the Olsen method in a pot experiment. Four soils were investigated: two from Pakistan and one each from England (calcareous) and Colombia (acidic). Two levels of residual phosphate were developed in each soil after addition of phosphate by incubation at either 10degreesC or 45degreesC. The amount of phosphate added was based on the P maximum of each soil, calculated using the Langmuir equation. Rvegrass was used as the test crop. The pooled data for the four soils incubated at 10degreesC showed good correlation between Olsen P and dry matter yield or P uptake (r(2) = 0.85 and 0.77, respectively), whereas at 45 degreesC, each soil had its own relationship and pooled data did not show correlation of Olsen P with dry matter yield or P uptake. When the data at both temperatures were pooled, Olsen P was a good indicator of yield and uptake for the English soil. For the Pakistani soils, Olsen P after 45 degreesC treatment was an underestimate relative to the 10 degreesC data and for the Colombian soil it was an overestimate. The reasons for these differences need to be explored further before high temperature incubation can be used to simulate long-term changes in the field.
Resumo:
Background: Leptin is produced predominantly by white adipocytes; in adults it regulates appetite and energy expenditure but its role in the neonate remains to be fully established. Objectives: To examine the effects of acute administration of recombinant human leptin on the endocrine profile and thermoregulation of neonatal pigs. Methods: 24 pairs of siblings (n = 48) were administered with either a single dose (4 mu g ml(-1) kg(-1) body weight) of leptin (L: n = 24) or a placebo (P: n = 24) on day 6 of neonatal life. Rectal temperature was recorded, and tissue samples were taken at 1 (n = 12), 2 (n = 12), 4 (n = 12) or 6 (n = 12) hours post-administration. Plasma concentrations of hormones and metabolites were determined in conjunction with messenger RNA (mRNA) for leptin and uncoupling protein-2. Results: Plasma leptin increased following leptin administration, and differences in concentrations of insulin, thyroxine and non-esterified fatty acids were observed between the two groups. Initially, rectal temperature decreased in L pigs but returned to start values by 1.5 h. This decline in rectal temperature was delayed in placebo animals, resulting in differences between treatments at 1.5 and 2 h. Conclusions: Acute leptin administration alters the endocrine profile of pigs and influences the thermoregulatory ability of the neonate. Copyright (C) 2007 S. Karger AG, Basel.
Resumo:
The effects of temperature and light integral on fruit growth and development of five cacao genotypes (Amelonado, AMAZ 15/15, SCA 6, SPEC 54/1 and UF 676) were studied in semi-controlled environment glasshouses in which the thermal regimes of cacao-growing regions of Brazil, Ghana and Malaysia were simulated. Fruit losses because of physiological will (cherelle will) were greater at higher temperatures and also differed significantly between genotypes, reflecting genetic differences in competition for assimilates between vegetative and reproductive components. Short-term measurements of fruit growth indicated faster growth rates at higher temperatures. In addition, a significant negative linear relationship between temperature and development time was observed. There was an effect of genotype on this relationship, such that time to fruit maturation at a given temperature was greatest for the clone UF 676 and least for AMAZ 15/15. Analysis of base temperatures, derived from these relationships indicated genetic variability in sensitivity of cacao fruit growth to temperature (base temperatures ranged from 7.5 degrees C for Amelonado and AMAZ 15/15 to 12.9 for SPEC 54/1). Final fruit size was a positive function of beam number for all genotypes and a positive function of light integral for Amelonado in the Malaysia simulated environment (where the temperature was almost constant). In simulated environments where temperature was the main variable (Brazil and Ghana) increases in temperature resulted in a significant decrease in final pod size for one genotype (Amelonado) in Brazil and for two genotypes (SPEC 54/1 and UF 676) in Ghana. It was hypothesised that pod growth duration (mediated by temperature), assimilation and beam number are all determinants of final pod size but that under specific conditions one of these factors may override the others. There was variability between genotypes in the response of beam size and beam lipid content to temperature. Negative relationships between temperature and bean size were found for Amelonado and UF 676. Lipid concentration was a curvilinear function of temperature for Amelonado and UF 676, with optimal temperatures of 23 degrees C and 24 degrees C, respectively. The variability observed here of different cacao genotypes to temperature highlights the need and opportunities for appropriate matching of planting material with local environments.
Resumo:
Shoot dieback is a problem in frequently trimmed Leyland hedges and is increasingly affecting gardeners’ choice of hedge trees, having a negative effect on a conifer nursery industry. Some damage can be attributed to the feeding by aphids, but it is unclear if there are also underlying physiological causes. In this study, we tested the hypothesis that shoot-clipping of conifer trees during adverse growing conditions (i.e. high air temperature and low soil moisture) could be leading to shoot ‘dieback’. Three-year-old Golden Leyland Cypress (x Cupressocyparis leylandii ‘Excalibur Gold’) plants were subjected to either a well-watered or droughted irrigation regime and placed in either a ‘hot’ (average day temperature = 40°C) or a ‘cool’ (average day temperature = 27°C) glasshouse compartment. Half of the plants from each glasshouse were clipped on Day 14 and again on Day 50. Measurements of soil moisture content (SMC), net CO2 assimilation rate (A), stomatal conductance (gs), branchlet xylem water potential (XWP), plant height and foliage colour were made. Within the clipped and unclipped treatments of both glasshouse compartments, plants from the droughted regime had significantly lower values for A, gs and XWP than those from the well-watered regime. However, there was no difference in these parameters between the hot and cool glasshouse compartments. The trends seen for A, gs and XWP of all treatments generally mirrored changes in SMC indicating a direct effect of water supply on these parameters. By the end of the experiment the overall foliage colour of plants from the hot glasshouse was darker than that of plants from the cool glasshouse and the overall foliage colour was also darker following shoot clipping. In general, shoot clipping led to increases in A, gs XWP and SMC. This may be due to the reduction in total leaf area leading to a greater supply of water for the remaining leaves. No shoot ‘dieback’ was observed in any treatment in response to drought stress or shoot-clipping.
Resumo:
The effects of temperature, photosynthetic photon flux density (PPFD) and photoperiod on vegetative growth and flowering of the raspberry (Rubus idaeus L.) 'Autumn Bliss' were investigated. Increased temperature resulted in an increased rate of vegetative growth and a greater rate of progress to flowering. Optimum temperatures lay in the low to mid 20degreesC range. Above this the rate of plant development declined. Increased PPFD also advanced flowering. While photoperiod did not significantly affect the rate of vegetative growth, flowering occurred earliest at intermediate photoperiods and was delayed by extreme photoperiods. These responses suggest that there is potential for adjusting cropping times of raspberry grown under protection by manipulating the environment, especially temperature.
Resumo:
The aim of this study was to evaluate the survivability of Bifidobacterium breve NCIMB 702257 in a three malt-based media supplemented with cysteine and yeast extract, and to determine the protective effect of these growth factors. A number of parameterised mathematical models were used to predict of kinetics of viability and total acidity during storage at different temperatures. Results demonstrated a good fit to the experimental mathematical model. The Arrhenius equations showed only reasonable fits and the polynomial plots contained a large area without data between 4 and 25 degrees C. In addition, it was shown that cysteine promotes growth and acid production by bifidobacteria, but does not extend survivability. On the other hand, increasing the yeast extract content of the fermentation media enhances the survivability of B. breve. To our knowledge, this is the first study to address the modelling of the survivability of probiotic bacteria in a cereal based fermentation media at different temperatures, introducing a more quantitative approach to the study of the shelf-life of a probiotic product. (C) 2009 Elsevier B.V. All rights reserved.