40 resultados para Teeth segmentation

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many algorithms have been developed to achieve motion segmentation for video surveillance. The algorithms produce varying performances under the infinite amount of changing conditions. It has been recognised that individually these algorithms have useful properties. Fusing the statistical result of these algorithms is investigated, with robust motion segmentation in mind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mouse and chick embryos, cyclic expression of lunatic fringe has an important role in the regulation of mesoderm segmentation. We have isolated a Fringe gene from the protochordate amphioxus. Amphioxus is the closest living relative of the vertebrates, and has mesoderm that is definitively segmented in a manner that is similar to, and probably homologous with, that of vertebrates. AmphiFringe is placed basal to vertebrate Fringe genes in molecular phylogenetic analyses, indicating that the duplications that formed radical-, manic- and lunatic fringe are specific to the vertebrate lineage. AmphiFringe expression was detected in the anterior neural plate of early neurulae, where it resolved into a series of segmental patches by the mid-neurulae stage. No AmphiFringe transcripts were detected in the mesoderm. Based on these observations, we propose a model depicting a successive recruitment of Fringe in the maintenance then regulation of segmentation during vertebrate evolution.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenotypic and phylogenetic studies were performed on four unidentified Gram-positive staining, catalase-negative, cc-hemolytic Streptococcus-like organisms recovered from the teeth of horses. SDS PAGE analysis of whole-cell proteins and comparative 16S rRNA gene sequencing demonstrated the four strains were highly related to each other but that they did not correspond to any recognised species of the genus Streptococcus. Phylogenetic analysis based on 16S rRNA gene sequences showed the unidentified organisms form a hitherto unknown sub-line within the Streptococcus genus, displaying a close affinity with Streptococcus mutans, Streptococcus ferus and related organisms. Sequence divergence values of > 5% with thew and other reference streptococcal species however demonstrated the organisms from equine sources represent a novel species. Based on the phenotypic distinctiveness of the new bacterium and molecular chemical and molecular genetic evidence, it is proposed that the unknown species be classified as Streptococcus devriesei sp. nov. The type strain of Streptococcus devriesei is CCUG 47155(T) (= CIP 107809T).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Williams syndrome (WS) is a developmental disorder in which visuo-spatial cognition is poor relative to verbal ability. At the level of visuo-spatial perception, individuals with WS can perceive both the local and global aspects of an image. However, the manner in which local elements are integrated into a global whole is atypical, with relative strengths in integration by luminance, closure, and alignment compared to shape, orientation and proximity. The present study investigated the manner in which global images are segmented into local parts. Segmentation by seven gestalt principles was investigated: proximity, shape, luminance, orientation, closure, size (and alignment: Experiment I only). Participants were presented with uniform texture squares and asked to detect the presence of a discrepant patch (Experiment 1) or to identify the form of a discrepant patch as a capital E or H (Experiment 2). In Experiment 1, the pattern and level of performance of the WS group did not differ from that of typically developing controls, and was commensurate with the general level of non-verbal ability observed in WS. These results were replicated in Experiment 2, with the exception of segmentation by proximity, where individuals with WS demonstrated superior performance relative to the remaining segmentation types. Overall, the results suggest that, despite some atypical aspects of visuo-spatial perception in WS, the ability to segment a global form into parts is broadly typical in this population. In turn, this informs predictions of brain function in WS, particularly areas V1 and V4. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address issues in segmentation Of remotely sensed LIDAR (LIght Detection And Ranging) data. The LIDAR data, which were captured by airborne laser scanner, contain 2.5 dimensional (2.5D) terrain surface height information, e.g. houses, vegetation, flat field, river, basin, etc. Our aim in this paper is to segment ground (flat field)from non-ground (houses and high vegetation) in hilly urban areas. By projecting the 2.5D data onto a surface, we obtain a texture map as a grey-level image. Based on the image, Gabor wavelet filters are applied to generate Gabor wavelet features. These features are then grouped into various windows. Among these windows, a combination of their first and second order of statistics is used as a measure to determine the surface properties. The test results have shown that ground areas can successfully be segmented from LIDAR data. Most buildings and high vegetation can be detected. In addition, Gabor wavelet transform can partially remove hill or slope effects in the original data by tuning Gabor parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.