16 resultados para Technical change
em CentAUR: Central Archive University of Reading - UK
Resumo:
The measurement of the impact of technical change has received significant attention within the economics literature. One popular method of quantifying the impact of technical change is the use of growth accounting index numbers. However, in a recent article Nelson and Pack (1999) criticise the use of such index numbers in situations where technical change is likely to be biased in favour of one or other inputs. In particular they criticise the common approach of applying observed cost shares, as proxies for partial output elasticities, to weight the change in quantities which they claim is only valid under Hicks neutrality. Recent advances in the measurement of product and factor biases of technical change developed by Balcombe et al (2000) provide a relatively straight-forward means of correcting product and factor shares in the face of biased technical progress. This paper demonstrates the correction of both revenue and cost shares used in the construction of a TFP index for UK agriculture over the period 1953 to 2000 using both revenue and cost function share equations appended with stochastic latent variables to capture the bias effect. Technical progress is shown to be biased between both individual input and output groups. Output and input quantity aggregates are then constructed using both observed and corrected share weights and the resulting TFPs are compared. There does appear to be some significant bias in TFP if the effect of biased technical progress is not taken into account when constructing the weights
Resumo:
Productivity growth is conventionally measured by indices representing discreet approximations of the Divisia TFP index under the assumption that technological change is Hicks-neutral. When this assumption is violated, these indices are no longer meaningful because they conflate the effects of factor accumulation and technological change. We propose a way of adjusting the conventional TFP index that solves this problem. The method adopts a latent variable approach to the measurement of technical change biases that provides a simple means of correcting product and factor shares in the standard Tornqvist-Theil TFP index. An application to UK agriculture over the period 1953-2000 demonstrates that technical progress is strongly biased. The implications of that bias for productivity measurement are shown to be very large, with the conventional TFP index severely underestimating productivity growth. The result is explained primarily by the fact that technological change has favoured the rapidly accumulating factors against labour, the factor leaving the sector. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper we estimate a Translog output distance function for a balanced panel of state level data for the Australian dairy processing sector. We estimate a fixed effects specification employing Bayesian methods, with and without the imposition of monotonicity and curvature restrictions. Our results indicate that Tasmania and Victoria are the most technically efficient states with New South Wales being the least efficient. The imposition of theoretical restrictions marginally affects the results especially with respect to estimates of technical change and industry deregulation. Importantly, our bias estimates show changes in both input use and output mix that result from deregulation. Specifically, we find that deregulation has positively biased the production of butter, cheese and powders.
Resumo:
To improve the welfare of the rural poor and keep them in the countryside, the government of Botswana has been spending 40% of the value of agricultural GDP on agricultural support services. But can investment make smallholder agriculture prosperous in such adverse conditions? This paper derives an answer by applying a two-output six-input stochastic translog distance function, with inefficiency effects and biased technical change to panel data for the 18 districts and the commercial agricultural sector, from 1979 to 1996 This model demonstrates that herds are the most important input, followed by draft power. land and seeds. Multilateral indices for technical change, technical efficiency and total factor productivity (TFP) show that the technology level of the commercial agricultural sector is more than six times that of traditional agriculture and that the gap has been increasing, due to technological regression in traditional agriculture and modest progress in commercial agriculture. Since the levels of efficiency are similar, the same patient is repeated by the TFP indices. This result highlights the policy dilemma of the trade-off between efficiency and equity objectives.
Resumo:
I examine the factors underpinning the British radio-equipment sector's particularly poor interwar productivity performance relative to the United States. Differences in socio-legal environments were crucial in allowing key players in the British industry to derive higher monopoly rents than their American counterparts. Higher British rents in turn, had the unintended outcome of stimulating innovation around restrictive patents, initiating a path-dependent process of technical change in favor of expensive multifunctional valves. These valves both raised direct production costs and prevented British firms from following the American path of broadening the radio market beyond the household's prime receiver.
Resumo:
We evaluate the profitability and technical efficiency of aquaculture in the Philippines. Farm-level data are used to compare two production systems corresponding to the intensive monoculture of tilapia in freshwater ponds and the extensive polyculture of shrimps and fish in brackish water ponds. Both activities are very lucrative, with brackish water aquaculture achieving the higher level of profit per farm. Stochastic frontier production functions reveal that technical efficiency is low in brackish water aquaculture, with a mean of 53%, explained primarily by the operator's experience and by the frequency of his visits to the farm. In freshwater aquaculture, the farms achieve a mean efficiency level of 83%. The results suggest that the provision of extension services to brackish water fish farms might be a cost-effective way of increasing production and productivity in that sector. By contrast, technological change will have to be the driving force of future productivity growth in freshwater aquaculture.
Resumo:
There is general agreement across the world that human-made climate change is a serious global problem,although there are still some sceptics who challenge this view. Research in organization studies on the topic is relatively new. Much of this research, however, is instrumental and managerialist in its focus on ‘win-win’ opportunities for business or its treatment of climate change as just another corporate social responsibility (CSR) exercise. In this paper, we suggest that climate change is not just an environmental problem requiring technical and managerial solutions; it is a political issue where a variety of organizations – state agencies, firms, industry associations, NGOs and multilateral organizations – engage in contestation as well as collaboration over the issue. We discuss the strategic, institutional and political economy dimensions of climate change and develop a socioeconomic regimes approach as a synthesis of these different theoretical perspectives. Given the urgency of the problem and the need for a rapid transition to a low-carbon economy, there is a pressing need for organization scholars to develop a better understanding of apathy and inertia in the face of the current crisis and to identify paths toward transformative change. The seven papers in this special issue address these areas of research and examine strategies, discourses, identities and practices in relation to climate change at multiple levels.
Resumo:
A fingerprint method for detecting anthropogenic climate change is applied to new simulations with a coupled ocean-atmosphere general circulation model (CGCM) forced by increasing concentrations of greenhouse gases and aerosols covering the years 1880 to 2050. In addition to the anthropogenic climate change signal, the space-time structure of the natural climate variability for near-surface temperatures is estimated from instrumental data over the last 134 years and two 1000 year simulations with CGCMs. The estimates are compared with paleoclimate data over 570 years. The space-time information on both the signal and the noise is used to maximize the signal-to-noise ratio of a detection variable obtained by applying an optimal filter (fingerprint) to the observed data. The inclusion of aerosols slows the predicted future warming. The probability that the observed increase in near-surface temperatures in recent decades is of natural origin is estimated to be less than 5%. However, this number is dependent on the estimated natural variability level, which is still subject to some uncertainty.
Resumo:
Societal concern is growing about the consequences of climate change for food systems and, in a number of regions, for food security. There is also concern that meeting the rising demand for food is leading to environmental degradation thereby exacerbating factors in part responsible for climate change, and further undermining the food systems upon which food security is based. A major emphasis of climate change/food security research over recent years has addressed the agronomic aspects of climate change, and particularly crop yield. This has provided an excellent foundation for assessments of how climate change may affect crop productivity, but the connectivity between these results and the broader issues of food security at large are relatively poorly explored; too often discussions of food security policy appear to be based on a relatively narrow agronomic perspective. To overcome the limitation of current agronomic research outputs there are several scientific challenges where further agronomic effort is necessary, and where agronomic research results can effectively contribute to the broader issues underlying food security. First is the need to better understand how climate change will affect cropping systems including both direct effects on the crops themselves and indirect effects as a result of changed pest and weed dynamics and altered soil and water conditions. Second is the need to assess technical and policy options for either reducing the deleterious impacts or enhancing the benefits of climate change on cropping systems while minimising further environmental degradation. Third is the need to understand how best to address the information needs of policy makers and report and communicate agronomic research results in a manner that will assist the development of food systems adapted to climate change. There are, however, two important considerations regarding these agronomic research contributions to the food security/climate change debate. The first concerns scale. Agronomic research has traditionally been conducted at plot scale over a growing season or perhaps a few years, but many of the issues related to food security operate at larger spatial and temporal scales. Over the last decade, agronomists have begun to establish trials at landscape scale, but there are a number of methodological challenges to be overcome at such scales. The second concerns the position of crop production (which is a primary focus of agronomic research) in the broader context of food security. Production is clearly important, but food distribution and exchange also determine food availability while access to food and food utilisation are other important components of food security. Therefore, while agronomic research alone cannot address all food security/climate change issues (and hence the balance of investment in research and development for crop production vis à vis other aspects of food security needs to be assessed), it will nevertheless continue to have an important role to play: it both improves understanding of the impacts of climate change on crop production and helps to develop adaptation options; and also – and crucially – it improves understanding of the consequences of different adaptation options on further climate forcing. This role can further be strengthened if agronomists work alongside other scientists to develop adaptation options that are not only effective in terms of crop production, but are also environmentally and economically robust, at landscape and regional scales. Furthermore, such integrated approaches to adaptation research are much more likely to address the information need of policy makers. The potential for stronger linkages between the results of agronomic research in the context of climate change and the policy environment will thus be enhanced.
Resumo:
Climate change is putting Colombian agriculture under significant stress and, if no adaptation is made, the latter will be severely impacted during the next decades. Ramirez-Villegas et al. (2012) set out a government-led, top-down, techno-scientific proposal for a way forward by which Colombian agriculture could adapt to climate change. However, this proposal largely overlooks the root causes of vulnerability of Colombian agriculture, and of smallholders in particular. I discuss some of the hidden assumptions underpinning this proposal and of the arguments employed by Ramirez-Villegas et al., based on existing literature on Colombian agriculture and the wider scientific debate on adaptation to climate change. While technical measures may play an important role in the adaptation of Colombian agriculture to climate change, I question whether the actions listed in the proposal alone and specifically for smallholders, truly represent priority issues. I suggest that by i) looking at vulnerability before adaptation, ii) contextualising climate change as one of multiple exposures, and iii) truly putting smallholders at the centre of adaptation, i.e. to learn about and with them, different and perhaps more urgent priorities for action can be identified. Ultimately, I argue that what is at stake is not only a list of adaptation measures but, more importantly, the scientific approach from which priorities for action are identified. In this respect, I propose that transformative rather than technical fix adaptation represents a better approach for Colombian agriculture and smallholders in particular, in the face of climate change.