39 resultados para Team learning approach in education
em CentAUR: Central Archive University of Reading - UK
Resumo:
Students may have difficulty in understanding some of the complex concepts which they have been taught in the general areas of science and engineering. Whilst practical work such as a laboratory based examination of the performance of structures has an important role in knowledge construction this does have some limitations. Blended learning supports different learning styles, hence further benefits knowledge building. This research involves the empirical studies of how an innovative use of vodcasts (video-podcasts) can enrich learning experience in the structural properties of materials laboratory of an undergraduate course. Students were given the opportunity of downloading and viewing the vodcasts on the theory before and after the experimental work. It is the choice of the students when (before or after, before and after) and how many times they would like to view the vodcasts. In blended learning, the combination of face-to-face teaching, vodcasts, printed materials, practical experiments, writing reports and instructors’ feedbacks benefits different learning styles of the learners. For the preparation of the practical laboratory work, the students were informed about the availability of the vodcasts prior to the practical session. After the practical work, students submit an individual laboratory report for the assessment of the structures laboratory. The data collection consists of a questionnaire completed by the students, and the practical reports submitted by them for assessment. The results from the questionnaire were analysed quantitatively, whilst the data from the assessment reports were analysed qualitatively. The analysis shows that students who have not fully grasped the theory after the practical were successful in gaining the required knowledge by viewing the vodcasts. Some students who have understood the theory may choose to view it once or not at all. Their understanding was demonstrated by the quality of their explanations in their reports. This is illustrated by the approach they took to explicate the results of their experimental work, for example, they can explain how to calculate the Young’s Modulus properly and provided the correct value for it. The research findings are valuable to instructors who design, develop and deliver different types of blended learning, and beneficial to learners who try different blended approaches. Recommendations were made on the role of the innovative application of vodcasts in the knowledge construction for structures laboratory and to guide future work in this area of research.
Resumo:
Problem-Based Learning, despite recent controversies about its effectiveness, is used extensively as a teaching method throughout higher education. In meteorology, there has been little attempt to incorporate Problem-Based Learning techniques into the curriculum. Motivated by a desire to enhance the reflective engagement of students within a current field course module, this project describes the implementation of two test Problem-Based Learning activities and testing and improvement using several different and complementary means of evaluation. By the end of a 2-year program of design, implementation, testing, and reflection and re-evaluation, two robust, engaging activities have been developed that provide an enhanced and diverse learning environment in the field course. The results suggest that Problem-Based Learning techniques would be a useful addition to the meteorology curriculum and suggestions for courses and activities that may benefit from this approach are included in the conclusions.
Resumo:
Students may have difficulty in understanding some of the complex concepts which they have been taught in the general areas of science and engineering. Whilst practical work such as a laboratory based examination of the performance of structures has an important role in knowledge construction this does have some limitations. Blended learning supports different learning styles, hence further benefits knowledge building. This research involves an empirical study of how vodcasts (video-podcasts) can be used to enrich learning experience in the structural properties of materials laboratory of an undergraduate course. Students were given the opportunity of downloading and viewing the vodcasts on the theory before and after the experimental work. It is the choice of the students when (before or after, before and after) and how many times they would like to view the vodcasts. In blended learning, the combination of face-to-face teaching, vodcasts, printed materials, practical experiments, writing reports and instructors’ feedbacks benefits different learning styles of the learners. For the preparation of the practical, the students were informed about the availability of the vodcasts prior to the practical session. After the practical work, students submitted an individual laboratory report for the assessment of the structures laboratory. The data collection consisted of a questionnaire completed by the students, follow-up semi-structured interviews and the practical reports submitted by them for assessment. The results from the questionnaire were analysed quantitatively, whilst the data from the assessment reports were analysed qualitatively. The analysis shows that most of the students who have not fully grasped the theory after the practical, managed to gain the required knowledge by viewing the vodcasts. According to their feedbacks, the students felt that they have control over how to use the material and to view it as many times as they wish. Some students who have understood the theory may choose to view it once or not at all. Their understanding was demonstrated by their explanations in their reports, and was illustrated by the approach they took to explicate the results of their experimental work. The research findings are valuable to instructors who design, develop and deliver different types of blended learning, and are beneficial to learners who try different blended approaches. Recommendations were made on the role of the innovative application of vodcasts in the knowledge construction for structures laboratory and to guide future work in this area of research.
Resumo:
This paper, based on the findings of a qualitative study, discusses the influence of Ghana's recently introduced English-only language-in-education policy on pupils' classroom communicative practices and learning generally. It highlights how the use of English- an unfamiliar language- creates anxiety among students and stalls effective classroom participation. The paper first considers the key issues that impinge on the literacy development in multilingual classrooms in postcolonial Africa including the uninformed attitudes towards mother tongue/bilingual education. It then draws on the empirical data from Africa and elsewhere to refute the negative perceptions about mother-tongue education, and examines the prospects for bilingual/mother-tongue education in multilingual classrooms in Ghana.
Resumo:
In this paper we pledge that physically based equations should be combined with remote sensing techniques to enable a more theoretically rigorous estimation of area-average soil heat flux, G. A standard physical equation (i.e. the analytical or exact method) for the estimation of G, in combination with a simple, but theoretically derived, equation for soil thermal inertia (F), provides the basis for a more transparent and readily interpretable method for the estimation of G; without the requirement for in situ instrumentation. Moreover, such an approach ensures a more universally applicable method than those derived from purely empirical studies (employing vegetation indices and albedo, for example). Hence, a new equation for the estimation of Gamma(for homogeneous soils) is discussed in this paper which only requires knowledge of soil type, which is readily obtainable from extant soil databases and surveys, in combination with a coarse estimate of moisture status. This approach can be used to obtain area-averaged estimates of Gamma(and thus G, as explained in paper II) which is important for large-scale energy balance studies that employ aircraft or satellite data. Furthermore, this method also relaxes the instrumental demand for studies at the plot and field scale (no requirement for in situ soil temperature sensors, soil heat flux plates and/or thermal conductivity sensors). In addition, this equation can be incorporated in soil-vegetation-atmosphere-transfer models that use the force restore method to update surface temperatures (such as the well-known ISBA model), to replace the thermal inertia coefficient.
Resumo:
For vegetated surfaces, calculation of soil heat flux, G, with the Exact or Analytical method requires a harmonic analysis of below-canopy soil surface temperature, to obtain the shape of the diurnal course of G. When determining G with remote sensing methods, only composite (vegetation plus soil) radiometric brightness temperature is available. This paper presents a simple equation that relates the sum of the harmonic terms derived for the composite radiometric surface temperature to that of belowcanopy soil surface temperature. The thermal inertia, Gamma(,) for which a simple equation has been presented in a companion paper, paper I, is used to set the magnitude of G. To assess the success of the method proposed in this paper for the estimation of the diurnal shape of G, a comparison was made between 'remote' and in situ calculated values from described field sites. This indicated that the proposed method was suitable for the estimation of the shape of G for a variety of vegetation types and densities. The approach outlined in paper I, to obtain Gamma, was then combined with the estimated harmonic terms to predict estimates of G, which were compared to values predicted by empirical remote methods found in the literature. This indicated that the method proposed in the combination of papers I and II gave reliable estimates of G, which, in comparison to the other methods, resulted in more realistic predictions for vegetated surfaces. This set of equations can also be used for bare and sparsely vegetated soils, making it a universally applicable method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
There has recently been increasing demand for better designs to conduct first-into-man dose-escalation studies more efficiently, more accurately and more quickly. The authors look into the Bayesian decision-theoretic approach and use simulation as a tool to investigate the impact of compromises with conventional practice that might make the procedures more acceptable for implementation. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
This paper introduces an international collaboration of EU and Asia in education, training and research in the field of sustainable built environment, which attempts to develop a network of practical and intellectual knowledge and training exchange between Chinese and European Universities in the field of sustainable building design and construction. The projects funded by the European Commission Asia Link program, UK Foreign & Commonwealth Office, British Council and the UK Engineering Physical Sciences Council (EPSRC) have been introduced. The projects have significant impacts on promoting sustainable development in built environment in China. The aim of this paper is to share the experiences with those who are interested and searching the ways to collaborate with China in education and research.