18 resultados para Taylor, Jane, d. 1865.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Previous studies have shown an inverse correlation between zooid size in cheilostome bryozoans and ambient water temperature. This relationship underlies the MART technique which uses intracolonial variation in zooid size to predict mean annual range in temperature experienced by bryozoan colonies during their life. Here we apply the MART technique to study Early and Mid Pliocene bryozoans from Central America (Panama, Costa Rica), the USA (Florida, South Carolina, North Carolina, Virginia) and the UK (Suffolk) to reconstruct palaeoseasonality across a range of latitudes for the North Atlantic during the Pliocene Epoch. Compared to the present-day, our analyses suggest greater seasonality (ca 4.5 degrees C) in the southern Caribbean at the time of Cayo Agua Formation deposition (ca 4.25 Ma), in keeping with inferred upwelling prior to the closure of the isthmian barrier at 2.7 Ma. Bryozoans also indicate seasonal upwelling on the Gulf Coast of Florida in a similar manner to the present-day. Because upwelling can be highly localised and prone to spatial and temporal variation in the Gulf of Mexico today, it contributes little to a broad understanding of Pliocene North Atlantic waters. However, MART estimates for the coastal plain region indicate a general reduction in the annual range in temperature relative to the present, suggesting that the colder surface waters that today reach south to Cape Hatteras had less influence in Early to Mid Pliocene times. These results, along with evidence from other proxies, strongly support reduced seasonality and warmer conditions along the eastern seaboard of the USA in the Early to Mid Pliocene. Finally, the MART estimates amongst Coralline Crag localities provide evidence for an increased annual range in temperature in the southern North Sea than at present. Our study shows that bryozoan MART estimates provide a powerful, independent proxy for palaeoseasonality and is the first to demonstrate that the MART technique can be applied to infer palaeoclimates across a wide range of latitudes focusing on a variety of geological formations and geographical regions. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Domestic gardens provide a significant component of urban green infrastructure but their relative contribution to eco-system service provision remains largely un-quantified. ‘Green infrastructure’ itself is often ill-defined, posing problems for planners to ascertain what types of green infrastructure provide greatest benefit and under what circumstances. Within this context the relative merits of gardens are unclear; however, at a time of greater urbanization where private gardens are increasingly seen as a ‘luxury’, it is important to define their role precisely. Hence, the nature of this review is to interpret existing information pertaining to gardens /gardening per se, identify where they may have a unique role to play and to highlight where further research is warranted. The review suggests that there are significant differences in both form and management of domestic gardens which radically influence the benefits. Nevertheless, gardens can play a strong role in improving the environmental impact of the domestic curtilage, e.g. by insulating houses against temperature extremes they can reduce domestic energy use. Gardens also improve localized air cooling, help mitigate flooding and provide a haven for wildlife. Less favourable aspects include contributions of gardens and gardening to greenhouse gas emissions, misuse of fertilizers and pesticides, and introduction of alien plant species. Due to the close proximity to the home and hence accessibility for many, possibly the greatest benefit of the domestic garden is on human health and well-being, but further work is required to define this clearly within the wider context of green infrastructure.
Resumo:
[1] A method is presented to calculate the continuum-scale sea ice stress as an imposed, continuum-scale strain-rate is varied. The continuum-scale stress is calculated as the area-average of the stresses within the floes and leads in a region (the continuum element). The continuum-scale stress depends upon: the imposed strain rate; the subcontinuum scale, material rheology of sea ice; the chosen configuration of sea ice floes and leads; and a prescribed rule for determining the motion of the floes in response to the continuum-scale strain-rate. We calculated plastic yield curves and flow rules associated with subcontinuum scale, material sea ice rheologies with elliptic, linear and modified Coulombic elliptic plastic yield curves, and with square, diamond and irregular, convex polygon-shaped floes. For the case of a tiling of square floes, only for particular orientations of the leads have the principal axes of strain rate and calculated continuum-scale sea ice stress aligned, and these have been investigated analytically. The ensemble average of calculated sea ice stress for square floes with uniform orientation with respect to the principal axes of strain rate yielded alignment of average stress and strain-rate principal axes and an isotropic, continuum-scale sea ice rheology. We present a lemon-shaped yield curve with normal flow rule, derived from ensemble averages of sea ice stress, suitable for direct inclusion into the current generation of sea ice models. This continuum-scale sea ice rheology directly relates the size (strength) of the continuum-scale yield curve to the material compressive strength.
Resumo:
1] We present a mathematical model describing the summer melting of sea ice. We simulate the evolution of melt ponds and determine area coverage and total surface ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt rate beneath the melt ponds, vertical seepage, and horizontal permeability. The model is initialized with surface topographies derived from laser altimetry corresponding to first-year sea ice and multiyear sea ice. We predict that there are large differences in the depth of melt ponds and the area of coverage between the two types of ice. We also find that the vertical seepage rate and the melt rate of unponded ice are important in determining the total surface ablation and area covered by melt ponds.
Resumo:
A mathematical model describing the heat budget of an irradiated medium is introduced. The one-dimensional form of the equations and boundary conditions are presented and analysed. Heat transport at one face of the slab occurs by absorption (and reflection) of an incoming beam of short-wave radiation with a fraction of this radiation penetrating into the body of the slab, a diffusive heat flux in the slab and a prescribed incoming heat flux term. The other face of the slab is immersed in its own melt and is considered to be a free surface. Here, temperature continuity is prescribed and evolution of the surface is determined by a Stefan condition. These boundary conditions are flexible enough to describe a range of situations such as a laser shining on an opaque medium, or the natural environment of polar sea ice or lake ice. A two-stream radiation model is used which replaces the simple Beer’s law of radiation attenuation frequently used for semi-infinite domains. The stationary solutions of the governing equations are sought and it is found that there exists two possible stationary solutions for a given set of boundary conditions and a range of parameter choices. It is found that the existence of two stationary solutions is a direct result of the model of radiation absorption, due to its effect on the albedo of the medium. A linear stability analysis and numerical calculations indicate that where two stationary solutions exist, the solution corresponding to a larger thickness is always stable and the solution corresponding to a smaller thickness is unstable. Numerical simulations reveal that when there are two solutions, if the slab is thinner than the smaller stationary thickness it will melt completely, whereas if the slab is thicker than the smaller stationary thickness it will evolve toward the larger stationary thickness. These results indicate that other mechanisms (e.g. wave-induced agglomeration of crystals) are necessary to grow a slab from zero initial thickness in the parameter regime that yields two stationary solutions.
Resumo:
A one-dimensional, thermodynamic, and radiative model of a melt pond on sea ice is presented that explicitly treats the melt pond as an extra phase. A two-stream radiation model, which allows albedo to be determined from bulk optical properties, and a parameterization of the summertime evolution of optical properties, is used. Heat transport within the sea ice is described using an equation describing heat transport in a mushy layer of a binary alloy (salt water). The model is tested by comparison of numerical simulations with SHEBA data and previous modeling. The presence of melt ponds on the sea ice surface is demonstrated to have a significant effect on the heat and mass balance. Sensitivity tests indicate that the maximum melt pond depth is highly sensitive to optical parameters and drainage. INDEX TERMS: 4207 Oceanography: General: Arctic and Antarctic oceanography; 4255 Oceanography: General: Numerical modeling; 4299 Oceanography: General: General or miscellaneous; KEYWORDS: sea ice, melt pond, albedo, Arctic Ocean, radiation model, thermodynamic
Resumo:
Laser photoacoustic spectra of vapour phase CHDCl2 reveal the presence of an interaction which has been ascribed to interbond coupling between C-H and C-D local modes. The absolute value of the interbond coupling parameter for the CHD group, determined from a fit of a model local mode hamiltonian to the experimental data, is shown to be given approximately by the geometric mean of the interbond coupling parameters of the CH2 and CD2 groups recently derived from similar studies of CH2Cl2 and CD2Cl2. Such behaviour is understood in terms of a simple analysis in which kinetic coupling effects dominate. It is suggested that C-H stretch/bend Fermi resonance is responsible for some weaker features in the spectra and modelling calculations are described which allow an order of magnitude estimate of the size of the coupling parameter involved.
Resumo:
Arnol'd's second hydrodynamical stability theorem, proven originally for the two-dimensional Euler equations, can establish nonlinear stability of steady flows that are maxima of a suitably chosen energy-Casimir invariant. The usual derivations of this theorem require an assumption of zero disturbance circulation. In the present work an analogue of Arnol'd's second theorem is developed in the more general case of two-dimensional quasi-geostrophic flow, with the important feature that the disturbances are allowed to have non-zero circulation. New nonlinear stability criteria are derived, and explicit bounds are obtained on both the disturbance energy and potential enstrophy which are expressed in terms of the initial disturbance fields. While Arnol'd's stability method relies on the second variation of the energy-Casimir invariant being sign-definite, the new criteria can be applied to cases where the second variation is sign-indefinite because of the disturbance circulations. A version of Andrews' theorem is also established for this problem.