65 resultados para TaqMan MGB probes
em CentAUR: Central Archive University of Reading - UK
Resumo:
Tetracapsuloides bryosalmonae is the myxozoan parasite causing proliferative kidney disease (PKD) of salmonid fishes in Europe and North America. The complete life cycle of the parasite remains unknown despite recent discoveries that the stages infectious for fish develop in freshwater bryozoans. During the course of examinations of the urine of rainbow trout (Oncorhynchus mykiss) with or recovering from PKD we identified spores with features similar to those of T. bryosalmonae found in the bryozoan host. Spores found in the urine were subspherical, with a width of 16 mum and height of 14 mum, and possessed two soft valves surrounding two spherical polar capsules (2 mum in diameter) and a single sporoplasm. The absence of hardened valves is a distinguishing characteristic of the newly established class Malacosporea that includes T. bryosalmonae as found in the bryozoan host. The parasite in the urine of rainbow trout possessed only two polar capsules and two valve cells compared to the four polar capsules and four valves observed in the spherical spores of 19 mum in diameter from T. bryosalmonae from the bryozoan host. Despite morphological differences, a relationship between the spores in the urine of rainbow trout and T. bryosalmonae was demonstrated by binding of monoclonal and polyclonal antibodies and DNA probes specific to T. bryosalmonae.
Resumo:
Sulphate-reducing bacteria (SRB) and methanogenic archaea (MA) are important anaerobic terminal oxidisers of organic matter. However, we have little knowledge about the distribution and types of SRB and MA in the environment or the functional role they play in situ. Here we have utilised sediment slurry microcosms amended with ecologically significant substrates, including acetate and hydrogen, and specific functional inhibitors, to identify the important SRB and MA groups in two contrasting sites on a UK estuary. Substrate and inhibitor additions had significant effects on methane production and on acetate and sulphate consumption in the slurries. By using specific 16S-targeted oligonucleotide probes we were able to link specific SRB and MA groups to the use of the added substrates. Acetate consumption in the freshwater-dominated sediments was mediated by Methanosarcinales under low-sulphate conditions and Desulfobacter under the high-sulphate conditions that simulated a tidal incursion. In the marine-dominated sediments, acetate consumption was linked to Desulfobacter. Addition of trimethylamine, a non-competitive substrate for methanogenesis, led to a large increase in Methanosarcinales signal in marine slurries. Desulfobulbus was linked to non-sulphate-dependent H-2 consumption in the freshwater sediments. The addition of sulphate to freshwater sediments inhibited methane production and reduced signal from probes targeted to Methanosarcinales and Methanomicrobiales, while the addition of molybdate to marine sediments inhibited Desulfobulbus and Desulfobacterium. These data complement our understanding of the ecophysiology of the organisms detected and make a firm connection between the capabilities of species, as observed in the laboratory, to their roles in the environment. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Objectives: Certain milk factors may help to promote the growth of a host-friendly colonic microflora (e.g. bifidobacteria, lactobacilli) and explain why breast-fed infants experience fewer and milder intestinal infections than those who are formula-fed. The effects of supplementation of formula with two such milk factors was investigated in this study. Materials and Methods: Infant rhesus macaques were breastfed, fed control formula, or formula supplemented with glycomacropeptide (GMP) or alpha-lactalburnin (alpha-LA) from birth to 5 months of age. Blood was drawn monthly and rectal swabs were collected weekly. At 4.5 months of age, 10(8) colonyforming units of enteropathogenic E.coli O127, strain 2349/68 (EPEC) was given orally and the response to infection assessed. The bacteriology of rectal swabs pre- and post-infection was determined by culture independent fluorescence in situ hybridization. Results: Post-challenge, breast-fed infants and infants fed alpha-LA-supplemented formula had no diarrhea, whilst those infants fed GMP-supplemented formula had intermittent diarrhea. In infants fed control formula the diarrhea was acute. Conclusions: Supplementation of infant formula with appropriate milk proteins may be useful for improving the infant's ability to resist acute infection caused by E.coli.
Resumo:
Neoglycolipid technology is the basis of a microarray platform for assigning oligosaccharide ligands for carbohydrate-binding proteins. The strategy for generating the neoglycolipid probes by reductive amination results in ring opening of the core monosaccharides. This often limits applicability to short-chain saccharides, although the majority of recognition motifs are satisfactorily presented with neoglycolipids of longer oligosaccharides. Here, we describe neoglycolipids prepared by oxime ligation. We provide evidence from NMR studies that a significant proportion of the oxime-linked core monosaccharide is in the ring-closed form, and this form selectively interacts with a carbohydrate-binding protein. By microarray analyses we demonstrate the effective presentation with oxime-linked neoglycolipids of (1) Lewis(x) trisaccharide to antibodies to Lewisx, (2) sialyllactose analogs to the sialic acid-binding receptors, siglecs, and (3) N-glycans to a plant lectin that requires an intact N-acetylglucosamine core.
Resumo:
Specific traditional plate count method and real-time PCR systems based on SYBR Green I and TaqMan technologies using a specific primer pair and probe for amplification of iap-gene were used for quantitative assay of Listeria monocytogenes in seven decimal serial dilution series of nutrient broth and milk samples containing 1.58 to 1.58×107 cfu /ml and the real-time PCR methods were compared with the plate count method with respect to accuracy and sensitivity. In this study, the plate count method was performed using surface-plating of 0.1 ml of each sample on Palcam Agar. The lowest detectable level for this method was 1.58×10 cfu/ml for both nutrient broth and milk samples. Using purified DNA as a template for generation of standard curves, as few as four copies of the iap-gene could be detected per reaction with both real-time PCR assays, indicating that they were highly sensitive. When these real-time PCR assays were applied to quantification of L. monocytogenes in decimal serial dilution series of nutrient broth and milk samples, 3.16×10 to 3.16×105 copies per reaction (equals to 1.58×103 to 1.58×107 cfu/ml L. monocytogenes) were detectable. As logarithmic cycles, for Plate Count and both molecular assays, the quantitative results of the detectable steps were similar to the inoculation levels.
Resumo:
Long-term depression (LTD) is one of the paradigms used in vivo or ex vivo for studying memory formation. In order to identify genes with potential relevance for memory formation we used mouse organotypic hippocampal slice cultures in which chemical LTD was induced by applications of 3,5-dihydroxyphenylglycine (DHPG). The induction of chemical LTD was robust, as monitored electrophysiologically. Gene expression analysis after chemical LTD induction was performed using cDNA microarrays containing >7,000 probes. The DHPG-induced expression of immediate early genes (c-fos, junB, egr1 and nr4a1) was subsequently verified by TaqMan polymerase chain reaction. Bioinformatic analysis suggested a common regulator element [serum response factor (SRF)/Elk-1 binding sites] within the promoter region of these genes. Indeed, here we could show a DHPG-dependent binding of SRF at the SRF response element (SRE) site within the promoter region of c-fos and junB. However, SRF binding to egr1 promoter sites was constitutive. The phosphorylation of the ternary complex factor Elk-1 and its localization in the nucleus of hippocampal neurones after DHPG treatment was shown by immunofluorescence using a phosphospecific antibody. We suggest that LTD leads to SRF/Elk-1-regulated gene expression of immediate early transcription factors, which could in turn promote a second broader wave of gene expression.
Resumo:
A number of recent experiments suggest that, at a given wetting speed, the dynamic contact angle formed by an advancing liquid-gas interface with a solid substrate depends on the flow field and geometry near the moving contact line. In the present work, this effect is investigated in the framework of an earlier developed theory that was based on the fact that dynamic wetting is, by its very name, a process of formation of a new liquid-solid interface (newly “wetted” solid surface) and hence should be considered not as a singular problem but as a particular case from a general class of flows with forming or/and disappearing interfaces. The results demonstrate that, in the flow configuration of curtain coating, where a liquid sheet (“curtain”) impinges onto a moving solid substrate, the actual dynamic contact angle indeed depends not only on the wetting speed and material constants of the contacting media, as in the so-called slip models, but also on the inlet velocity of the curtain, its height, and the angle between the falling curtain and the solid surface. In other words, for the same wetting speed the dynamic contact angle can be varied by manipulating the flow field and geometry near the moving contact line. The obtained results have important experimental implications: given that the dynamic contact angle is determined by the values of the surface tensions at the contact line and hence depends on the distributions of the surface parameters along the interfaces, which can be influenced by the flow field, one can use the overall flow conditions and the contact angle as a macroscopic multiparametric signal-response pair that probes the dynamics of the liquid-solid interface. This approach would allow one to investigate experimentally such properties of the interface as, for example, its equation of state and the rheological properties involved in the interface’s response to an external torque, and would help to measure its parameters, such as the coefficient of sliding friction, the surface-tension relaxation time, and so on.
Resumo:
Analysis of the vertical velocity of ice crystals observed with a 1.5micron Doppler lidar from a continuous sample of stratiform ice clouds over 17 months show that the distribution of Doppler velocity varies strongly with temperature, with mean velocities of 0.2m/s at -40C, increasing to 0.6m/s at -10C due to particle growth and broadening of the size spectrum. We examine the likely influence of crystals smaller than 60microns by forward modelling their effect on the area-weighted fall speed, and comparing the results to the lidar observations. The comparison strongly suggests that the concentration of small crystals in most clouds is much lower than measured in-situ by some cloud droplet probes. We argue that the discrepancy is likely due to shattering of large crystals on the probe inlet, and that numerous small particles should not be included in numerical weather and climate model parameterizations.
Resumo:
Soil moisture content, theta, of a bare and vegetated UK gravelly sandy loam soil (in situ and repacked in small lysimeters) was measured using various dielectric instruments (single-sensor ThetaProbes, multi-sensor Profile Probes, and Aquaflex Sensors), at depths ranging between 0.03 and I m, during the summers of 2001 (in situ soil) and 2002 (mini-lysimeters). Half-hourly values of evaporation, E, were calculated from diurnal changes in total soil profile water content, using the soil water balance equation. For the bare soil field, Profile Probes and ML2x ThetaProbes indicated a diurnal course of theta that did not concur with typical soil physical observations: surface layer soil moisture content increased from early morning until about midday, after which theta declined, generally until the early evening. The unexpected course of theta was positively correlated to soil temperature, T-s, also at deeper depths. Aquaflex and ML1 ThetaProbe (older models) outputs, however, reflected common observations: 0 increased slightly during the night (capillary rise) and decreased from the morning until late afternoon (as a result of evaporation). For the vegetated plot, the spurious diurnal theta fluctuations were less obvious, because canopy shading resulted in lower amplitudes of T-s. The unrealistic theta profiles measured for the bare and vegetated field sites caused diurnal estimates of E to attain downward daytime and upward night-time values. In the mini-lysimeters, at medium to high moisture contents, theta values measured by (ML2x) ThetaProbes followed a relatively realistic course, and predictions of E from diurnal changes in vertically integrated theta generally compared well with lysimeter estimates of E. However, time courses of theta and E became comparable to those observed for the field plots when the soil in the lysimeters reached relatively low values of theta. Attempts to correct measured theta for fluctuations in T, revealed that no generally applicable formula could be derived. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The goal of this work is the numerical realization of the probe method suggested by Ikehata for the detection of an obstacle D in inverse scattering. The main idea of the method is to use probes in the form of point source (., z) with source point z to define an indicator function (I) over cap (z) which can be reconstructed from Cauchy data or far. eld data. The indicator function boolean AND (I) over cap (z) can be shown to blow off when the source point z tends to the boundary aD, and this behavior can be used to find D. To study the feasibility of the probe method we will use two equivalent formulations of the indicator function. We will carry out the numerical realization of the functional and show reconstructions of a sound-soft obstacle.
Resumo:
Jupiter’s magnetosphere acts as a point source of near-relativistic electrons within the heliosphere. In this study, three solar cycles of Jovian electron data in near-Earth space are examined. Jovian electron intensity is found to peak for an ideal Parker spiral connection, but with considerable spread about this point. Assuming the peak in Jovian electron counts indicates the best magnetic connection to Jupiter, we find a clear trend for fast and slow solar wind to be over- and under-wound with respect to the ideal Parker spiral, respectively. This is shown to be well explained in terms of solar wind stream interactions. Thus, modulation of Jovian electrons by corotating interaction regions (CIRs) may primarily be the result of changing magnetic connection, rather than CIRs acting as barriers to cross-field diffusion. By using Jovian electrons to remote sensing magnetic connectivity with Jupiter’s magnetosphere, we suggest that they provide a means to validate solar wind models between 1 and 5 AU, even when suitable in situ solar wind observations are not available. Furthermore, using Jovian electron observations as probes of heliospheric magnetic topology could provide insight into heliospheric magnetic field braiding and turbulence, as well as any systematic under-winding of the heliospheric magnetic field relative to the Parker spiral from footpoint motion of the magnetic field.
Resumo:
Background: Hexaploid wheat is one of the most important cereal crops for human nutrition. Molecular understanding of the biology of the developing grain will assist the improvement of yield and quality traits for different environments. High quality transcriptomics is a powerful method to increase this understanding. Results: The transcriptome of developing caryopses from hexaploid wheat ( Triticum aestivum, cv. Hereward) was determined using Affymetrix wheat GeneChip (R) oligonucleotide arrays which have probes for 55,052 transcripts. Of these, 14,550 showed significant differential regulation in the period between 6 and 42 days after anthesis ( daa). Large changes in transcript abundance were observed which were categorised into distinct phases of differentiation ( 6 - 10 daa), grain fill ( 12 - 21 daa) and desiccation/maturation ( 28 - 42 daa) and were associated with specific tissues and processes. A similar experiment on developing caryopses grown with dry and/or hot environmental treatments was also analysed, using the profiles established in the first experiment to show that most environmental treatment effects on transcription were due to acceleration of development, but that a few transcripts were specifically affected. Transcript abundance profiles in both experiments for nine selected known and putative wheat transcription factors were independently confirmed by real time RT-PCR. These expression profiles confirm or extend our knowledge of the roles of the known transcription factors and suggest roles for the unknown ones. Conclusion: This transcriptome data will provide a valuable resource for molecular studies on wheat grain. It has been demonstrated how it can be used to distinguish general developmental shifts from specific effects of treatments on gene expression and to diagnose the probable tissue specificity and role of transcription factors.
Resumo:
Nucleolin is a multi-functional protein that is located to the nucleolus. In tissue Culture cells, the stability of nucleolin is related to the proliferation status of the cell. During development, rat cardiomyocytes proliferate actively with increases in the mass of the heart being due to both hyperplasia and hypertrophy. The timing of this shift in the phenotype of the myocyte from one capable of undergoing hyperplasia to one that can grow only by hypertrophy occurs within 4 days of post-natal development. Thus, cardiomyocytes are an ideal model system in which to study the regulation of nucleolin during growth in vivo. Using Western blot and quantitative RT-PCR (TaqMan) we found that the amount of nucleolin is regulated both at the level of transcription and translation during the development of the cardiomyocyte. However, in cells which had exited the cell cycle and were subsequently given a hypertrophic stimulus, nucleolin was regulated post-transcriptionally. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: Chronic fatigue syndrome (CFS) is an increasing medical phenomenon of unknown aetiology leading to high levels of chronic morbidity. Of the many hypotheses that purport to explain this disease, immune system activation, as a central feature, has remained prominent but unsubstantiated. Supporting this, a number of important cytokines have previously been shown to be over-expressed in disease subjects. The diagnosis of CFS is highly problematic since no biological markers specific to this disease have been identified. The discovery of genes relating to this condition is an important goal in seeking to correctly categorize and understand this complex syndrome. OBJECTIVE: The aim of this study was to screen for changes in gene expression in the lymphocytes of CFS patients. METHODS: 'Differential Display' is a method for comparing mRNA populations for the induction or suppression of genes. In this technique, mRNA populations from control and test subjects can be 'displayed' by gel electrophoresis and screened for differing banding patterns. These differences are indicative of altered gene expression between samples, and the genes that correspond to these bands can be cloned and identified. Differential display has been used to compare expression levels between four control subjects and seven CFS patients. RESULTS: Twelve short expressed sequence tags have been identified that were over-expressed in lymphocytes from CFS patients. Two of these correspond to cathepsin C and MAIL1 - genes known to be upregulated in activated lymphocytes. The expression level of seven of the differentially displayed sequences have been verified by quantifying relative level of these transcripts using TAQman quantitative PCR. CONCLUSION: Taken as a whole, the identification of novel gene tags up-regulated in CFS patients adds weight to the idea that CFS is a disease characterized by subtle changes in the immune system.