17 resultados para Tall buildings -- Environmental engineering
em CentAUR: Central Archive University of Reading - UK
Resumo:
The effect of the surrounding lower buildings on the wind pressure distribution on a high-rise building is investigated by computational fluid dynamics (CFD). When B/H=0.1, it is found that the wind pressure on the windward side was reduced especially on the lower part, but for different layers of surrounding buildings, there was no great difference, which agrees with our previous wind tunnel experiment data. Then we changed the aspect ratio from 0.1 to 2, to represent different airflow regimes: skimming flow (SF), and wake interference (WI). It shows that the average Cp increases when B/H increases. For different air flow regimes, it is found that insignificant difference exists when the number of the building layers is more than 2. From the engineering point of view, it is sufficient to only include the first layer for natural ventilation design by using CFD simulation or wind tunnel experiment.
Resumo:
The main objectives of this paper are to: firstly, identify key issues related to sustainable intelligent buildings (environmental, social, economic and technological factors); develop a conceptual model for the selection of the appropriate KPIs; secondly, test critically stakeholder's perceptions and values of selected KPIs intelligent buildings; and thirdly develop a new model for measuring the level of sustainability for sustainable intelligent buildings. This paper uses a consensus-based model (Sustainable Built Environment Tool- SuBETool), which is analysed using the analytical hierarchical process (AHP) for multi-criteria decision-making. The use of the multi-attribute model for priority setting in the sustainability assessment of intelligent buildings is introduced. The paper commences by reviewing the literature on sustainable intelligent buildings research and presents a pilot-study investigating the problems of complexity and subjectivity. This study is based upon a survey perceptions held by selected stakeholders and the value they attribute to selected KPIs. It is argued that the benefit of the new proposed model (SuBETool) is a ‘tool’ for ‘comparative’ rather than an absolute measurement. It has the potential to provide useful lessons from current sustainability assessment methods for strategic future of sustainable intelligent buildings in order to improve a building's performance and to deliver objective outcomes. Findings of this survey enrich the field of intelligent buildings in two ways. Firstly, it gives a detailed insight into the selection of sustainable building indicators, as well as their degree of importance. Secondly, it tesst critically stakeholder's perceptions and values of selected KPIs intelligent buildings. It is concluded that the priority levels for selected criteria is largely dependent on the integrated design team, which includes the client, architects, engineers and facilities managers.
Resumo:
Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.
Resumo:
Currently there are few observations of the urban wind field at heights other than rooftop level. Remote sensing instruments such as Doppler lidars provide wind speed data at many heights, which would be useful in determining wind loadings of tall buildings, and predicting local air quality. Studies comparing remote sensing with traditional anemometers carried out in flat, homogeneous terrain often use scan patterns which take several minutes. In an urban context the flow changes quickly in space and time, so faster scans are required to ensure little change in the flow over the scan period. We compare 3993 h of wind speed data collected using a three-beam Doppler lidar wind profiling method with data from a sonic anemometer (190 m). Both instruments are located in central London, UK; a highly built-up area. Based on wind profile measurements every 2 min, the uncertainty in the hourly mean wind speed due to the sampling frequency is 0.05–0.11 m s−1. The lidar tended to overestimate the wind speed by ≈0.5 m s−1 for wind speeds below 20 m s−1. Accuracy may be improved by increasing the scanning frequency of the lidar. This method is considered suitable for use in urban areas.
Resumo:
Current research agendas are increasingly encouraging the construction industry to operate on the basis of 'added value'. Such debates echo the established concept of 'high value manufacturing' and associated trends towards servitization. Within construction, the so-called 'value agenda' draws heavily from the notion of integrated solutions. This is held to be especially appropriate in the context of PFI projects. Also relevant is the concept of service-led projects whereby the project rationale is driven by the client's objectives for delivering an enhanced service to its own customers. Such ideas are contextualized by a consideration of broader trends of privatization and outsourcing within and across the construction industry's client base. The current emphasis on integrated solutions reflects long-term trends within privatized client organizations towards the outsourcing of asset management capabilities. However, such trends are by no means uniform or consistent. An in-depth case study of three operating divisions within a major construction company illustrates that firms are unlikely to reorientate their business in response to the 'value agenda'. In the case of PFI, the tendency has been to establish specialist units for the purposes of winning work. Meanwhile, institutionally embedded operating routines within the rest of the business remain broadly unaffected.
Resumo:
A new dynamic model of water quality, Q(2), has recently been developed, capable of simulating large branched river systems. This paper describes the application of a generalized sensitivity analysis (GSA) to Q(2) for single reaches of the River Thames in southern England. Focusing on the simulation of dissolved oxygen (DO) (since this may be regarded as a proxy for the overall health of a river); the GSA is used to identify key parameters controlling model behavior and provide a probabilistic procedure for model calibration. It is shown that, in the River Thames at least, it is more important to obtain high quality forcing functions than to obtain improved parameter estimates once approximate values have been estimated. Furthermore, there is a need to ensure reasonable simulation of a range of water quality determinands, since a focus only on DO increases predictive uncertainty in the DO simulations. The Q(2) model has been applied here to the River Thames, but it has a broad utility for evaluating other systems in Europe and around the world.
Resumo:
LIght Detection And Ranging (LIDAR) data for terrain and land surveying has contributed to many environmental, engineering and civil applications. However, the analysis of Digital Surface Models (DSMs) from complex LIDAR data is still challenging. Commonly, the first task to investigate LIDAR data point clouds is to separate ground and object points as a preparatory step for further object classification. In this paper, the authors present a novel unsupervised segmentation algorithm-skewness balancing to separate object and ground points efficiently from high resolution LIDAR point clouds by exploiting statistical moments. The results presented in this paper have shown its robustness and its potential for commercial applications.
Resumo:
In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.
Resumo:
This paper examines biogas innovation system and processes in two farming communities in Davao del Sur, Philippines. Innovation histories were traced through workshops, semi-structured interviews, observations and document analysis. The paper shows that there were diverse innovation actors both from public and private sectors. Restrictive attitudes and practices resulted in weak and limited interactions among actors. Multi-actor interaction was weak, signifying a lack of innovation actors that focus on creating, developing and strengthening linkages, networks and partnerships. The lack of support in the socio-organisational institutions that constitute the enabling environment within which innovation actors operate may lead to systemic failure.
Resumo:
Mathematical models have been vitally important in the development of technologies in building engineering. A literature review identifies that linear models are the most widely used building simulation models. The advent of intelligent buildings has added new challenges in the application of the existing models as an intelligent building requires learning and self-adjusting capabilities based on environmental and occupants' factors. It is therefore argued that the linearity is an impropriate basis for any model of either complex building systems or occupant behaviours for control or whatever purpose. Chaos and complexity theory reflects nonlinear dynamic properties of the intelligent systems excised by occupants and environment and has been used widely in modelling various engineering, natural and social systems. It is proposed that chaos and complexity theory be applied to study intelligent buildings. This paper gives a brief description of chaos and complexity theory and presents its current positioning, recent developments in building engineering research and future potential applications to intelligent building studies, which provides a bridge between chaos and complexity theory and intelligent building research.
Resumo:
A carbon reduction strategy for a historic Grade 1 listed office building in London is presented. The study evaluates the impact of49 different carbon abatement options, quantified using building simulation software, auditing procedures and qualitative methods. The impact of each option is assessed against three criteria: carbon abatement potential, practicality and cost. The strategy comprises of18interventions,integrated within 12 key recommendations. Accumulative reduction of 37% (below a 2009 carbon emissions baseline)appears achievable and only feasible with heavy reliance on changes in occupant behaviour. This theme appears central in achieving realistic and significant carbon savings from listed buildings, where planning constraints relinquish potential for major building fabric alteration and renewable energy installations.
Resumo:
This paper investigates the price effects of environmental certification on commercial real estate assets. It is argued that there are likely to be three main drivers of price differences between certified and non-certified buildings. First, certified buildings offer a bundle of benefits to occupiers relating to business productivity, image and occupancy costs. Second, due to these occupier benefits, certified buildings can result in higher rents and lower holding costs for investors. Third, certified buildings may require a lower risk premium. Drawing upon the CoStar database of US commercial real estate assets, hedonic regression analysis is used to measure the effect of certification on both rent and price. We first estimate the rental regression for a sample of 110 LEED and 433 Energy Star as well as several thousand benchmark buildings to compare the sample to. The results suggest that, compared to buildings in the same metropolitan region, certified buildings have a rental premium and that the more highly rated that buildings are in terms of their environmental impact, the greater the rental premium. Furthermore, based on a sample of transaction prices for 292 Energy Star and 30 LEED-certified buildings, we find price premia of 10% and 31% respectively compared to non-certified buildings in the same metropolitan area
Resumo:
The sustainable intelligent building is a building that has the best combination of environmental, social, economic and technical values. And its sustainability assessment is related with system engineering methods and multi-criteria decision-making. Therefore firstly, the wireless monitoring system of sustainable parameters for intelligent buildings is achieved; secondly, the indicators and key issues based on the “whole life circle” for sustainability of intelligent buildings are researched; thirdly, the sustainable assessment model identified on the structure entropy and fuzzy analytic hierarchy process is proposed.