16 resultados para TRIBLOCK

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excess surface energy of lamellae formed by an ABA triblock copolymer melt oriented parallel to a neutral surface is evaluated using self-consistent field theory (SCFT). Consistent with experiments and previous SCFT calculations, we find a preference for the A-rich domains at the surface, which can only be attributed to the architectural asymmetry between the A and B blocks. The behavior was previously attributed to a loss of bridging configurations that occurs when the B-domain resides at the surface. Here we demonstrate that it is actually the presence of chain ends that reduces the excess surface energy of an A-rich domain relative that of a B-rich domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and shear flow behaviour of aqueous micellar solutions and gels formed by an amphiphilic poly(oxybutylene)-poly(oxyethylene)-poly(oxybutylene) triblock copolymer with a lengthy hydrophilic poly(oxyethylene) block has been investigated by rheology, small angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). SANS revealed that bridging of chains between micelles introduces, in the micellar solution, an attractive long-range component which can be described through a potential of interaction corresponding to sticky soft spheres. The strength of the attractive interaction increases with increasing concentration. Rheology showed that the dependence of the storage modulus with temperature can be explained as a function of the micellar bridging, micellisation and phase morphology. SAXS studies showed that the orientation adopted by the system in the get phase under shear is similar to that previously observed by us for the gel phase of a poly(oxyethylene)-poly(oxybutylene) diblock copolymer with a long poly(oxyethylene) chain, suggesting that the micellar corona/core length ratio and not the architecture of the block copolymer influences the alignment of the gel phase under shear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small-angle X-ray scattering was used to characterise aqueous micellar gels of triblock copolymers E137S18E137, E82S9E82, E76S5E76, E62P39E62, and of two mixtures: E137S18E137 and E62P39E62 (Mix 1) and ES2S9E82 and E62P39E62 (Mix 2), each 50/50 wt%. E = oxyethylene, CH2CH2O; S = oxyphenylethylene, OCH2CH(C6H5); and P = oxypropylene, OCH2CH(CH3)- Within the concentration and temperature ranges investigated (30-40 wt% copolymer, 20-80 degrees C), spherical micelles of copolymers E137S18E137, E82S9ES2 and E62P39E62 packed into bodycentred cubic (BCC) structures. Gels of E76S5E76 were stable only at high concentrations and low temperatures, and a 70 wt/o copolymer solution at T = 30 degrees C formed a hexagonal gel consistent with cylindrical micelles. It is likely that the mixed copolymers would form two distributions of micelles, and more complex structures were expected. However, gels of Mix 2 had well-ordered BCC structures, while the less ordered gels of Mix 1 were also best characterised as BCC. (c) 2006 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of doubly thermoresponsive PPO-PMPC-PNIPAM triblock copolymer gelators by atom transfer radical polymerization using a PPO-based macroinitiator is described. Provided that the PPO block is sufficiently long, dynamic light scattering and differential scanning calorimetry studies confirm the presence of two separate thermal transitions corresponding to micellization and gelation, as expected. However, these ABC-type triblock copolymers proved to be rather inefficient gelators: free-standing gels at 37 degrees C required a triblock copolymer concentration of around 20 wt%. This gelator performance should be compared with copolymer concentrations of 6-7 wt% required for the PNIPAM-PMPC-PNIPAM triblock copolymers reported previously. Clearly, the separation of micellar self-assembly from gel network formation does not lead to enhanced gelator efficiencies, at least for this particular system. Nevertheless, there are some features of interest in the present study. In particular, close inspection of the viscosity vs temperature plot obtained for a PPO43-PMPC160-PNIPAM(81) triblock copolymer revealed a local minimum in viscosity. This is consistent with intramicelle collapse of the outer PNIPAM blocks prior to the development of the intermicelle hydrophobic interactions that are a prerequisite for macroscopic gelation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology in the solid state of a series of triblock copolymers comprising a poly(ethylene glycol) (PEG) midblock and symmetric poly(gamma-benzyl-L-glutamate) (PBLG) end blocks has been studied using X-ray scattering and microscopy techniques. Transmission electron microscopy (TEM) on samples selectively stained with uranyl acetate provided clear assignment of morphologies for as-cast and annealed samples. The thickness of both PEG and PBLG domains was in good agreement with calculations based on the conformations of the respective chains, allowing for the crystal or amorphous state of PEG and the a-helical or P-sheet structure of the PBLG. Atomic force microscopy provided complementary information on surface morphology for several samples that was in good agreement with the structure observed by TEM. A morphology diagram was constructed. Cylindrical structures were observed for ordered samples with low f(PBLG), whereas at higher f(PLBG) there was evidence for broken lamellar and "hockey puck" nanostructures. Regular lamellae were observed for intermediate compositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An aqueous solution of a poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) with a composition of EG13CL23EG13 undergoes multiple transitions, from sol-to-gel (hard gel)-to-sol-to-gel (soft gel)-to-sol, in the concentration range 20.0∼35.0 wt.-%. Through dynamic mechanical analysis, UV-vis spectrophotometry, small angle X-ray scattering, differential scanning calorimetry, microcalorimetry and 13C NMR spectroscopy, the mechanism of these transitions was investigated. The hard gel and soft gel are distinguished by the crystalline and amorphous state of the PCL. The extent of PEG dehydration and the molecular motion of each block also played a critical role in the multiple transitions. This paper suggests a new mechanism for these multiple transitions driven by temperature changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, we studied the preparation of biomimetic triblock copolymer (ABA) membranes in aqueous solution and their deposition into solid supports. The self-assembly structures of the ABA in aqueous solution was investigated by using optical microscopy, dynamic light scattering, electron microscopy (EM) and SAXS. Spherical and tubular polymersomes were found at the highest concentrations investigated. The mechanism of deposition on solid supports (mica and glass) was elucidated by using atomic force microscopy (AFM). The deposition results in the formation of a uniform defect-free membrane at suitable polymer concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melts of ABA triblock copolymer molecules with identical end blocks are examined using self-consistent field theory (SCFT). Phase diagrams are calculated and compared with those of homologous AB diblock copolymers formed by snipping the triblocks in half. This creates additional end segments which decreases the degree of segregation. Consequently, triblock melts remain ordered to higher temperatures than their diblock counterparts. We also find that middle-block domains are easier to stretch than end-block domains. As a result, domain spacings are slightly larger, the complex phase regions are shifted towards smaller A-segment compositions, and the perforated-lamellar phase becomes more metastable in triblock melts as compared to diblock melts. Although triblock and diblock melts exhibit very similar phase behavior, their mechanical properties can differ substantially due to triblock copolymers that bridge between otherwise disconnected A domains. We evaluate the bridging fraction for lamellar, cylindrical, and spherical morphologies to be about 40%–45%, 60%–65%, and 75%–80%, respectively. These fractions only depend weakly on the degree of segregation and the copolymer composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we report detailed information on the internal structure of PNIPAM-b-PEG-b-PNIPAM nanoparticles formed from self-assembly in aqueous solutions upon increase in temperature. NMR spectroscopy, light scattering and small-angle neutron scattering (SANS) were used to monitor different stages of nanoparticle formation as a function of temperature, providing insight into the fundamental processes involved. The presence of PEG in a copolymer structure significantly affects the formation of nanoparticles, making their transition to occur over a broader temperature range. The crucial parameter that controls the transition is the ratio of PEG/PNIPAM. For pure PNIPAM, the transition is sharp; the higher the PEG/PNIPAM ratio results in a broader transition. This behavior is explained by different mechanisms of PNIPAM block incorporation during nanoparticle formation at different PEG/PNIPAM ratios. Contrast variation experiments using SANS show that the structure of nanoparticles above cloud point temperatures for PNIPAM-b-PEG-b-PNIPAM copolymers is drastically different from the structure of PNIPAM mesoglobules. In contrast with pure PNIPAM mesoglobules, where solid-like particles and chain network with a mesh size of 1-3 nm are present; nanoparticles formed from PNIPAM-b-PEG-b-PNIPAM copolymers have non-uniform structure with “frozen” areas interconnected by single chains in Gaussian conformation. SANS data with deuterated “invisible” PEG blocks imply that PEG is uniformly distributed inside of a nanoparticle. It is kinetically flexible PEG blocks which affect the nanoparticle formation by prevention of PNIPAM microphase separation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly into wormlike micelles of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer Pluronic P84 in aqueous salt solution (2 M NaCl) has been studied by rheology, small-angle X-ray and neutron scattering (SAXS/SANS), and light scattering. Measurements of the flow curves by controlled stress rheometry indicated phase separation under flow. SAXS on solutions subjected to capillary flow showed alignment of micelles at intermediate shear rates, although loss of alignment was observed for high shear rates. For dilute solutions, SAXS and static light scattering data on unaligned samples could be superposed over three decades in scattering vector, providing unique information on the wormlike micelle structure over several length scales. SANS data provided information on even shorter length scales, in particular, concerning "blob" scattering from the micelle corona. The data could be modeled based on a system of semiflexible self-avoiding cylinders with a circular cross-section, as described by the wormlike chain model with excluded volume interactions. The micelle structure was compared at two temperatures close to the cloud point (47 degrees C). The micellar radius was found not to vary with temperature in this region, although the contour length increased with increasing temperature, whereas the Kuhn length decreased. These variations result in an increase of the low-concentration radius of gyration with increasing temperature. This was consistent with dynamic light scattering results, and, applying theoretical results from the literature, this is in agreement with an increase in endcap energy due to changes in hydration of the poly(ethylene oxide) blocks as the temperature is increased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the structure and shear flow behavior of a side-on liquid crystalline triblock copolymer, named PBA-b-PA444-b-PBA (PBA is poly(butyl acrylate) and PA444 is a poly(acrylate) with a nematic liquid crystal side-on mesogen), in the self-assembled lamellar phase and in the disordered phase. Simultaneous oscillatory shear and small-angle X-ray scattering experiments show that shearing PBA-b-PA444-b-PBA at high frequency and strain amplitudes leads to the alignment of the lamellae with normals perpendicular to the shear direction and to the velocity gradient direction, i.e., in the perpendicular orientation. The order-to-disorder transition temperature (T-ODT) is independent of the applied strain, in contrast to results reported in the literature for coil-coil diblock copolymers, which show an increase in T-ODT with shear rate. It is possible that in our system, T-ODT does not depend on the applied strain because the fluctuations are weaker than those present in coil-coil diblock copolymer systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cylinder forming poly(styrene-b-butadiene-b-styrene) triblock copolymer melt is cyclically processed through a capillary at a high shear rate in the Cambridge Multipass Rheometer (MPR). In situ X-ray diffraction experiments enable observation of the effect of the shear on the block copolymer (BCP) nanophase orientation, both during and after processing. Temporal resolution of the X-ray exposures is increased, whilst retaining intensity, by exploiting the cyclical nature of the shear and the material's response to it; short exposures from many cycles, individually having few counts, are added together to produce well resolved X-ray patterns. Orientation of the cylinders reduces during processing, then increases during pauses between processing. The loss of orientation is attributed to the high shear rate deforming the melt faster than the structure can respond, whilst it is believed that melt relaxation, linked to the compressibility of the material, produces much lower shear rates after mechanical processing has ceased, which induces strong orientation of the nanostructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ordering of block copolymers in thin films is reviewed, starting, from the fundamental principles and extending to recent promising developments as templates for nanolithography which may find important applications in the semiconductor industry. Ordering in supported thin films of symmetric and asymmetric AB diblock and ABA triblock copolymers is discussed, along with that of more complex materials such as ABC triblocks and liquid crystalline block copolymers Techniques to prepare thin films, and to characterise ordering within them, are summarized. Several methods to align Hock copolymer nanostructures, important in several applications are outlined A number of potential applications in nanolithography, production of porous materials, templating. and patterning of organic and inorganic materials are then presented. The influence of crystallization on the morphology of a block copolymer film is briefly discussed, as are structures in grafted block copolymer films. (C) 2009 Elsevier Ltd All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three triblock copolymers of ethylene oxide and phenyl glycidyl ether, type E(m)G(n)E(m), where G = OCH2-CH(CH2OC6H5) and E = OCH2CH2, were synthesized and characterized by gel-permeation chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and NMR spectroscopy. Their association properties in aqueous solution were investigated by surface tensiometry and light scattering, yielding values of the critical micelle concentration (cmc), the hydrodynamic radius, and the association number. Gel boundaries in concentrated micellar solution were investigated by tube inversion, and for one copolymer, the temperature and frequency dependence of the dynamic moduli served to confirm and extend the phase diagram and to highlight gel properties. Small-angle X-ray scattering was used to investigate gel structure. The overall aim of the work was to define a block copolymer micellar system with better solubilization capacity for poorly soluble aromatic drugs than had been achieved so far by use of block copoly(oxyalkylene)s. Judged by the solubilization of griseofulvin in aqueous solutions of the E(m)G(n)E(m) copolymers, this aim was achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphiphilic chitosan-based polymers (M-w < 20 kDa) self-assemble in aqueous media at low micromolar concentrations to give previously unknown micellar clusters of 100-300 nm in size. Micellar clusters comprise smaller 10-30 nm aggregates, and the nanopolarity/drug incorporation efficiency of their hydrophobic domains can be tailored by varying the degree of lipidic derivatization and molecular weight of the carbohydrate. The extent of drug incorporation by these novel micellar clusters is 1 order of magnitude higher than is seen with triblock copolymers, with molar polymer/drug ratios of 1:48 to 1:67. On intravenous injection, the pharmacodynamic activity of a carbohydrate propofol formulation is increased by 1 order of magnitude when compared to a commercial emulsion formulation, and on topical ocular application of a carbohydrate prednisolone formulation, initial drug aqueous humor levels are similar to those found with a 10-fold dose of prednisolone suspension.