5 resultados para TOOTH APEX
em CentAUR: Central Archive University of Reading - UK
Resumo:
Serial sampling and stable isotope analysis performed along the growth axis of vertebrate tooth enamel records differences attributed to seasonal variation in diet, climate or animal movement. Because several months are required to obtain mature enamel in large mammals, modifications in the isotopic composition of environmental parameters are not instantaneously recorded, and stable isotope analysis of tooth enamel returns a time-averaged signal attenuated in its amplitude relative to the input signal. For convenience, stable isotope profiles are usually determined on the side of the tooth where enamel is thickest. Here we investigate the possibility of improving the time resolution by targeting the side of the tooth where enamel is thinnest. Observation of developing third molars (M3) in sheep shows that the tooth growth rate is not constant but decreases exponentially, while the angle between the first layer of enamel deposited and the enamel–dentine junction increases as a tooth approaches its maximal length. We also noted differences in thickness and geometry of enamel growth between the mesial side (i.e., the side facing the M2) and the buccal side (i.e., the side facing the cheek) of the M3. Carbon and oxygen isotope variations were measured along the M3 teeth from eight sheep raised under controlled conditions. Intra-tooth variability was systematically larger along the mesial side and the difference in amplitude between the two sides was proportional to the time of exposure to the input signal. Although attenuated, the mesial side records variations in the environmental signal more faithfully than the buccal side. This approach can be adapted to other mammals whose teeth show lateral variation in enamel thickness and could potentially be used as an internal check for diagenesis.
Resumo:
From the early Roman period, there is archaeological evidence for the exploitation of the Flemish coastal plain (Belgium) for a range of activities, such as sheep herding on the then developing salt-marshes and salt-meadows for the production of wool. During the early Middle Ages, this culminated in the establishment of dedicated ‘sheep estates’. This phase of exploitation was followed by extensive drainage and land reclamation measures in the high Medieval period, transforming areas into grassland, suited for cattle breeding. As part of a larger project investigating the onset, intensification and final decline of sheep management in coastal Flanders in the historical period, this pilot study presents the results of sequential sampling and oxygen isotope analysis of a number of sheep teeth (M2, n = 8) from four late Roman and Medieval sites (dating from 4th to 15th century AD), in order to assess potential variations in season of birth between the different sites and through time. In comparison with published data from herds of known birth season, incremental enamel data from the Flemish sites are consistent with late winter/spring births, with the possibility of some instances of slightly earlier parturition. These findings suggest that manipulation of season of birth was not a feature of the sheep husbandry-based economies of early historic Flanders, further evidencing that wool production was the main purpose of contemporary sheep rearing in the region. Manipulation of season of birth is not likely to have afforded economic advantage in wool-centred economies, unlike in some milk- or meat-based regimes.
Resumo:
Background We investigated interacting effects of matric potential and soil strength on root elongation of maize and lupin, and relations between root elongation rates and the length of bare (hairless) root apex. Methods Root elongation rates and the length of bare root apexwere determined formaize and lupin seedlings in sandy loam soil of various matric potentials (−0.01 to −1.6 MPa) and bulk densities (0.9 to 1.5 Mg m−3). Results Root elongation rates slowed with both decreasing matric potential and increasing penetrometer resistance. Root elongation of maize slowed to 10 % of the unimpeded rate when penetrometer resistance increased to 2 MPa, whereas lupin elongated at about 40 % of the unimpeded rate. Maize root elongation rate was more sensitive to changes in matric potential in loosely packed soil (penetrometer resistances <1 MPa) than lupin. Despite these differing responses, root elongation rate of both species was linearly correlated with length of the bare root apex (r2 0.69 to 0.97). Conclusion Maize root elongation was more sensitive to changes in matric potential and mechanical impedance than lupin. Robust linear relationships between elongation rate and length of bare apex suggest good potential for estimating root elongation rates for excavated roots.