13 resultados para THERMAL-TREATMENT

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipid oxidation was studied in beef and chicken muscle after high pressure treatment (0.1-800 MPa) at different temperatures (20-70 degrees C for 20 min, prior to storage at 4 degrees C for 7 days. Pressure treatment of beef samples at room temperature led to increases in TBARS values after 7 days storage at 4 degrees C; however, the increases were more marked after treatment at pressures >= 400 MPa (at least fivefold) than after treatment at lower pressures (less than threefold). Similar results were found in those samples treated at 40 degrees C, but at 60 degrees C and 70 degrees C pressure had little additional effect on the oxidative stability of the muscle. Pressure treatments of 600 MPa and 800 MPa, at all temperatures. induced increased rates of lipid oxidation in chicken muscle, but, in general, chicken muscle was more stable than beef to pressure. and the catalytic effect of pressure was still seen at the higher temperatures of 50 degrees C, 60 degrees C and 70 degrees C. The addition of 1%, Na(2)EDTA decreased TBARS values of the beef muscle during storage and inhibited the increased rates of lipid oxidation induced by pressure. The inhibition by vitamin E (0.05% w/w) and BHT (0.02% w/w), either alone or in combination, were less marked than seen with Na(2)EDTA, suggesting that transition metal ions released from insoluble complexes are of major importance in catalysing lipid oxidation in pressure-treated muscle foods. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of high pressure (to 800 MPa) applied at different temperatures (20-70 degreesC) for 20 min on beef post-rigor longissimus dorsi texture were studied. Texture profile analysis showed that when heated at ambient pressure there was the expected increase in hardness with increasing temperature and when pressure was applied at room temperature there was again the expected increase in hardness with increasing pressure. Similar results to those found at ambient temperature were found when pressure was applied at 40 degreesC. However, at higher temperatures, 60 and 70 degreesC it was found that pressures of 200 MPa caused large and significant decreases in hardness. The results found for hardness were mirrored by those for gumminess and chewiness. To further understand the changes in texture observed, intact beef longissimus dorsi samples and extracted myofibrils were both subjected to differential scanning calorimetry after being subjected to the same pressure/temperature regimes. As expected collagen was reasonably inert to pressure and only at temperatures of 60-70 degreesC was it denatured/unfolded. However, myosin was relatively easily unfolded by both pressure and temperature and when pressure denatured a new and modified structure was formed of low thermal stability. Although this new structure had low thermal stability at ambient pressure it still formed in both the meat and myofibrils when pressure was applied at 60 degreesC. It seems unlikely that structurally induced changes can be a major cause of the significant loss of hardness observed when beef is treated at high temperature (60-70 degreesC) and 200 MPa and it is suggested that accelerated proteolysis under these conditions is the major cause. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The flavor characteristics of pennywort juices with added sugar treated by ultra-high pressure, pasteurization, and sterilization were investigated using solid phase microextraction combined with gas chromatography-mass spectrometry. It was found that sesquiterpene hydrocarbons comprised the major class of volatile components present and the juices had a characteristic aroma due to the presence of volatiles including beta-caryophyllene and humulene and alpha-copaene. In comparison with heated juices, HPP-treated samples could retain more volatile compounds such as linalool and geraniol similar to those present in fresh juice, whereas some volatiles such as alpha-terpinene and ketone class were apparently formed by thermal treatment. All processing operations produced juice that was not significantly different in the concentration of total volatiles. Practical Application: Pennywort juice is considered a nutraceutical drink for health benefits. Therefore, to preserve all aroma and active components in this juice, a nonthermal process such as ultra-high pressure should be a more appropriate technique for retention of its nutritive values than pasteurization and sterilization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multilayered hydrogel coatings can be developed on the surface of glass slides via layer-by-layer deposition of hydrogen-bonded interpolymer complexes formed by poly(acrylic acid) and methylcellulose. Chemical modification of the glass surface with (3-aminopropyl)triethoxysilane with subsequent layer-by-layer deposition and cross-linking of interpolymer complexes by thermal treatment allows fabrication of ultrathin hydrogel coatings, not detachable from the substrate. The thickness of these coatings is directly related to the number of deposition cycles and cross-linking conditions. An unusual dependence of the hydrogel swelling properties on the sample thickness is observed and can be interpreted by gradual transitions between two- and three-dimensional networks. The hydrogels exhibit pH-responsive swelling behaviour, achieving higher swelling degrees at pH > 6.0. These coatings can be used as model substrates to study the adhesive properties of pharmaceutical tablets and can potentially mimic the total work of adhesion observed for the detachment of mucoadhesives from porcine buccal mucosa but fail to exhibit identical detachment profiles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel diazirine functionalised aniline derivative, 3-(3-aminophenyl)-3-methyldiazirine 1, was prepared and employed as an AB(2)-type monomer in the synthesis of hyperbranched polymers; thus providing the first instance in which polyamines have been prepared via carbene insertion polymerisation. Photolysis of the monomer 1 in bulk and in solution resulted in the formation of hyperbranched poly(aryl amine)s with degrees of polymerisation (DP) varying from 9 to 26 as determined by gel permeation chromatography (GPC). In solution, an increase in the initial monomer concentration was generally found to result in a decrease in the molecular weight characteristics of the resulting poly(aryl amine) s. Subsequent thermal treatment of the poly(aryl amine) s caused a further increase in the DP values up to a maximum of 31. Nuclear magnetic resonance (NMR) spectroscopic analysis revealed that the increase in molecular weight upon thermal treatment resulted from hydroamination of styrenic species formed in the initial photopolymerisation or activation of diazirine moieties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Maillard reaction causes changes to protein structure and occurs in foods mainly during thermal treatment. Melanoidins, the final products of the Maillard reaction, may enter the gastrointestinal tract, which is populated by different species of bacteria. In this study, melanoidins were prepared from gluten and glucose. Their effect on the growth of faecal bacteria was determined in culture with genotype and phenotype probes to identify the different species involved. Analysis of peptic and tryptic digests showed that low molecular mass products are formed from the degradation of melanoidins. Results showed a change in the growth of bacteria. This in vitro study demonstrated that melanoidins, prepared from gluten and glucose, affect the growth of the gut microflora.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mucoadhesive polymeric films have been prepared based on blends of chitosan and hydroxyethylcellulose. The blends have been characterized by IR spectroscopy, DSC, WAXD, TGA, SEM, and mechanical testing. It is demonstrated that the mechanical properties of chitosan are improved significantly upon blending with hydroxyethylcellulose. An increase in hydroxyethylcellulose content in the blends makes the materials more elastic. The thermal treatment of the blends at 100 degrees C leads to partial cross-linking of the polymers and formation of water-insoluble but swellable materials. The adhesion of the films towards porcine buccal mucosa decreases with increasing hydroxyethylcellulose content in the blends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(acrylic acid) forms insoluble hydrogen-bonded interpolymer complexes with methylcellulose in aqueous solutions under acidic conditions. In this work the reaction heats and binding constants were determined for the complexation between poly(acrylic acid) and methylcellulose by isothermal titration calorimetry at different pH and findings are correlated with the aggregation processes occurring in this system. The principal contribution to the complexation heat results from primary polycomplex particle aggregation. Transmission electron microscopy of nanoparticles produced at pH 1.4 and 2.4 demonstrated that they are spherical and dense structures. The nanoparticles ranged from 80 to 200 nm, whereas particles formed at pH 3.2 were 20-30 nm and were stabilized against aggregation by a network of uncomplexed macromolecules. For the first time, multilayered materials were developed on the basis of hydrogen-bonded complexes of poly(acrylic acid) and methylcellulose using layer-by-layer deposition on a glass surface. The thickness of these films was a linear function of the number of deposition cycles. The materials were subsequently cross-linked by thermal treatment, resulting in ultrathin hydrogels which detached from the glass substrate upon swelling. The swelling capacity of ultrathin hydrogels differed from the swelling of the thicker films of a similar chemical composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrophilic polymeric films based on blends of hydroxyethylcellulose and maleic acid-co-methyl vinyl ether were produced by casting from aqueous solutions. The physicochemical properties of the blends have been assessed using Fourier transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, dielectric spectroscopy, etc. The pristine films exhibit complete miscibility due to the formation of intermacromolecular hydrogen bonding. The thermal treatment of the blend films leads to cross-linking via intermacromolecular esterification and anhydride formation. The cross-linked materials are able to swell in water and their swelling degree can be easily controlled by temperature and thermal treatment time. The formation of the crosslinks is apparent in the dynamic properties of the blends as observed through the mechanical relaxation and dielectric relaxation spectra. The dielectric characteristics of the material are influenced by the effects of change in the local structure of the blend on the ionic conduction processes and the rate of dipolar relaxation. Separation of these processes is attempted using the dielectric modulus method. Significant deviations from a simple additive rule of mixing on the activation energy are observed consistent with hydrogen bonding and crosslinking of the matrix. This paper indicates a method for the creation of films with good mechanical and physical characteristics by exposing the blends to a relatively mild thermal treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water-soluble polymers are often capable of forming interpolymer complexes in solutions and at interfaces, which offers an excellent opportunity for surface modification. The complex formation may be driven by H-bonding between poly(carboxylic acids) and non-ionic polymers or by electrostatic attraction between oppositely-charged polyelectrolytes. In the present communication the following applications of interpolymer complexation in coating technologies will be considered: (1) Complexation between poly(acrylic acid) and non-ionic polymers via H-bonding was used to coat glass surfaces. It was realised using layer-by-layer deposition of IPC on glass surfaces with subsequent cross-linking of dry multilayers by thermal treatment. Depending on the glass surface functionality this complexation resulted in detachable and non-detachable hydrogel films; (2) Electrostatic layer-by-layer self-assembly between glycol chitosan and bovine serum albumin (BSA) was used to coat magnetic nanoparticles. It was demonstrated that the native structure of BSA remains unaffected by the self-assembling process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A suite of climate model experiments indicates that 20th Century increases in ocean heat content and sea-level ( via thermal expansion) were substantially reduced by the 1883 eruption of Krakatoa. The volcanically-induced cooling of the ocean surface is subducted into deeper ocean layers, where it persists for decades. Temporary reductions in ocean heat content associated with the comparable eruptions of El Chichon ( 1982) and Pinatubo ( 1991) were much shorter lived because they occurred relative to a non-stationary background of large, anthropogenically-forced ocean warming. Our results suggest that inclusion of the effects of Krakatoa ( and perhaps even earlier eruptions) is important for reliable simulation of 20th century ocean heat uptake and thermal expansion. Inter-model differences in the oceanic thermal response to Krakatoa are large and arise from differences in external forcing, model physics, and experimental design. Systematic experimentation is required to quantify the relative importance of these factors. The next generation of historical forcing experiments may require more careful treatment of pre-industrial volcanic aerosol loadings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposites of high-density polyethylene (HDPE) and carbon nanotubes (CNT) of different geometries (single wall, double wall, and multiwall; SWNT, DWNT, and MWNT) were prepared by in situ polymerization of ethylene on CNT whose surface had been previously treated with a metallocene catalytic system. In this work, we have studied the effects of applying the successive self-nucleation and annealing thermal fractionation technique (SSA) to the nanocomposites and have also determined the influence of composition and type of CNT on the isothermal crystallization behavior of the HDPE. SSA results indicate that all types of CNT induce the formation of a population of thicker lamellar crystals that melt at higher temperatures as compared to the crystals formed in neat HDPE prepared under the same catalytic and polymerization conditions and subjected to the same SSA treatment. Furthermore, the peculiar morphology induced by the CNT on the HDPE matrix allows the resolution of thermal fractionation to be much better. The isothermal crystallization results indicated that the strong nucleation effect caused by CNT reduced the supercooling needed for crystallization. The interaction between the HDPE chains and the surface of the CNT is probably very strong as judged by the results obtained, even though it is only physical in nature. When the total crystallinity achieved during isothermal crystallization is considered as a function of CNT content, it was found that a competition between nucleation and topological confinement could account for the results. At low CNT content the crystallinity increases (because of the nucleating effect of CNT on HDPE), however, at higher CNT content there is a dramatic reduction in crystallinity reflecting the increased confinement experienced by the HDPE chains at the interfaces which are extremely large in these nanocomposites. Another consequence of these strong interactions is the remarkable decrease in Avrami index as CNT content increases. When the Avrami index reduces to I or lower, nucleation dominates the overall kinetics as a consequence of confinement effects. Wide-angle X-ray experiments were performed at a high-energy synchrotron source and demonstrated that no change in the orthorhombic unit cell of HDPE occurred during crystallization with or without CNT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solubility of penciclovir (C10N5O3H17) in a novel film formulation designed for the treatment of cold sores was determined using X-ray, thermal, microscopic and release rate techniques. Solubilities of 0.15–0.23, 0.44, 0.53 and 0.42% (w/w) resulted for each procedure. Linear calibration lines were achieved for experimentally and theoretically determined differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) data. Intra- and inter-batch data precision values were determined; intra values were more precise. Microscopy was additionally useful for examining crystal shape, size distribution and homogeneity of drug distribution within the film. Whereas DSC also determined melting point, XRPD identified polymorphs and release data provided relevant kinetics.