2 resultados para TETRAPHENYLSULFONATO PORPHYRINS
em CentAUR: Central Archive University of Reading - UK
Resumo:
The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe-2(mu-pdt)(CO)(4){PPh2(4-py)}(2)] (3) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated.
Resumo:
Metal-organic frameworks (MOFs) can be exceptionally good catalytic materials thanks to the presence of active metal centres and a porous structure that is advantageous for molecular adsorption and confinement. We present here a first-principles investigation of the electronic structure of a family of MOFs based on porphyrins connected through phenyl-carboxyl ligands and AlOH species, in order to assess their suitability for the photocatalysis of fuel production reactions using sunlight. We consider structures with protonated porphyrins and those with the protons exchanged with late 3d metal cations (Fe2+, Co2+, Ni2+, Cu2+, Zn2+), a process that we find to be thermodynamically favorable from aqueous solution for all these metals. Our band structure calculations, based on an accurate screened hybrid functional, reveal that the bandgaps are in a favorable range (2.0 to 2.6 eV) for efficient adsorption of solar light. Furthermore, by approximating the vacuum level to the pore center potential, we provide the alignment of the MOFs’ band edges with the redox potentials for water splitting and carbon dioxide reduction, and show that the structures studied here have band edges positions suitable for these reactions at neutral pH.