39 resultados para T3 thyroid hormone

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown that there is significant disparity in the expression of uncoupling proteins (UCP) 2 and 3 between modern-commercial and ancient-Meishan porcine genotypes, commercial pigs also have higher plasma triiodothyronine (T(3)) in on the first day of life. T(3) and the sympathetic nervous system are both known to regulate UCPs in rodents and humans; their role in regulating these proteins in the pig is unknown. This study examined whether thyroid hormone manipulation or administration of a selective beta3 adrenoceptor agonist (ZD) influenced plasma hormones, colonic temperature and UCP expression in adipose tissue of two breeds of pig. To mimic the differences observed in thyroid hormone status, piglets from Meishan and commercial litters were randomly assigned to control (1 ml/kg water), T(3) (10 mg/kg) (Meishan only), methimazole (a commonly used antithyroid drug) (50 mg/kg) (commercial only) or ZD (10 mg/kg) oral administration for the first 4 days of postnatal life. Adipose tissue UCP2/3 mRNA abundance was measured on day 4 using PCR. T(3) administration raised plasma T(3) concentrations and increased colonic temperature on day 4. UCP3 mRNA abundance was higher in Meishan, than commercial piglets (p = 0.042) and was downregulated following T(3) administration (p = 0.014). Irrespective of genotype, ZD increased UCP2 mRNA abundance (Meishan p = 0.05, commercial p = 0.03). Expression of neither UCP2 nor 3 was related to colonic temperature, regardless of treatment. In conclusion, we have demonstrated a dissociation between thyroid hormones and the sympathetic nervous system in the regulation of UCPs in porcine adipose tissue. We have also suggested that expression of adipose tissue UCP2 and 3 are not related to body temperature in piglets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Male rats were treated with triiodothyronine in the drinking water for 12 days. In vitro rates of isoprenaline stimulated lipolysis were significantly greater in brown but not white adipose tissue. Rates of [14C]glucose incorporation into triacylglycerols were significantly reduced in BAT (brown adipose tissue) and WAT (white adipose tissue) under basal and isoprenaline stimulated conditions. In a second experiment, hyperthyroid animals showed impaired weight gain, despite increased food intake during 19 days' treatment. Energy expenditure on days 5 and 12, and BAT core temperature differences (TBAT - TCORE) on day 19, were significantly greater than in control animals. Epididymal white fat pad weight was reduced and interscapular brown fat pad weight increased by triiodothyronine treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both the estrogen receptor (ER) and thyroid hormone receptor (TR) are members of the nuclear receptor superfamily. Two isoforms of the ER, alpha and beta, exist. The TRalpha and beta isoforms are products of two distinct genes that are further differentially spliced to give TRalpha1 and alpha2, TRbeta1 and beta2. The TRs have been shown to interfere with ER-mediated transcription from both the consensus estrogen response element (ERE) and the rat preproenkephalin (PPE) promoter, possibly by competing with ER binding to the ERE or by squelching coactivators essential for ER-mediated transcription. The rat oxytocin receptor (OTR) gene is thought to be involved in several facets of reproductive and affiliative behaviors. 17beta-Estradiol-bound ERs upregulate the OTR gene in the ventromedial hypothalamus, a region critical for the induction of lordosis behavior in several species. We investigated the effects of the ligand-binding TR isoforms on the ER-mediated transcription from a physiological promoter of a behaviorally relevant gene such as the OTR. Only ERalpha could induce the OTR gene in two cell lines tested, the CV-1 and the SK-N-BE2C neuroblastoma cell lines. ERbeta was incapable of inducing the gene in either cell line. ERalpha is therefore not equivalent to ERbeta on this physiological promoter. Indeed, in the neural cell line, ERbeta can inhibit ERalpha-mediated induction from the OTR promoter. While the TRalpha1 isoform inhibited ERalpha-mediated induction in the neural cell line, the TRbeta1 isoform stimulated induction, thus demonstrating isoform specificity in the interaction. The use of a DNA-binding mutant, the TR P box mutant, showed that inhibition of ERalpha-mediated induction of the rat OTR gene promoter by the TRalpha1 isoform does not require DNA-binding ability. SRC-1 overexpression relieved TRalpha1-mediated inhibition in both cell lines, suggesting that squelching for coactivators is an important molecular mechanism in TRalpha-mediated inhibition. Such interactions between TR and ER isoforms on the rat OTR promoter provide a mechanism to achieve neuroendocrine integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crosstalk between nuclear receptors is important for conversion of external and internal stimuli to a physiologically meaningful response by cells. Previous studies from this laboratory have demonstrated crosstalk between the estrogen (ER) and thyroid hormone receptors (TR) on two estrogen responsive physiological promoters, the preproenkephalin and oxytocin receptor gene promoter. Since ERa and ERb are isoforms possessing overlapping and distinct transactivation properties, we hypothesized that the interaction of ERa and b with the various TR isoforms would not be equivalent. To explore this hypothesis, the consensus estrogen response element (ERE)derived from the Xenopus vitellogenin gene is used to investigate the differences in interaction between ERa and b isoforms and the different TR isoforms in fibroblast cells. Both the ER isoforms transactivate from the consensus ERE, though ERa transactivates to a greater extent than ERb. Although neither of the TRb isoforms have an effect on ERa transactivation from the consensus ERE, the liganded TRa1 inhibits the ERa transactivation from the consensus ERE. In contrast, the liganded TRa1 facilitates ERb-mediated transactivation. The crosstalk between the TRb isoforms with the ERa isoform, on the consensus ERE, is different from that with the ERb isoform. The use of a TRa1 mutant, which is unable to bind DNA, abolishes the ability of the TRa1 isoform to interact with either of the ER isoforms. These differences in nuclear receptor crosstalk reveal an important functional difference between isoforms, which provides a novel mechanism for neuroendocrine integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear receptors are ligand-activated transcription factors, which have the potential to integrate internal metabolic events in an organism, with consequences for control of behaviour. Previous studies from this laboratory have shown that thyroid hormone receptor (TR) isoforms can inhibit oestrogen receptor (ER)alpha-mediated induction of preproenkephalin (PPE) gene expression in the hypothalamus. Also, thyroid hormone administration inhibits lordosis, a behaviour facilitated by PPE expression. We have examined the effect of multiple ligand-binding TR isoforms on the ER-mediated induction of the PPE gene in transient transfection assays in CV-1 cells. On a natural PPE gene promoter fragment containing two putative oestrogen response elements (EREs), both ER alpha and beta isoforms mediate a four to five-fold induction by oestrogen. Cotransfection of TR alpha 1 along with ER alpha inhibited the ER alpha transactivation of PPE by approximately 50%. However, cotransfection with either TR beta 1 or TR beta 2 expression plasmids produced no effect on the ER alpha or ER beta mediated induction of PPE. Therefore, under these experimental conditions, interactions with a single ER isoform are specific to an individual TR isoform. Transfection with a TR alpha 1 DNA-binding mutant could also inhibit ER alpha transactivation, suggesting that competition for binding on the ERE may not be the exclusive mechanism for inhibition. Data with the coactivator, SRC-1, suggested that coactivator squelching may participate in the inhibition. In dramatic contrast, when ER beta is cotransfected, TR alpha 1 stimulated ER beta-mediated transactivation of PPE by approximately eight-fold over control levels. This is the first study revealing specific interactions among nuclear receptor isoforms on a neuroendocrine promoter. These data also suggest that the combinatorics of ER and TR isoforms allow multiple forms of flexible gene regulations in the service of neuroendocrine integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oestrogens are critical for the display of lordosis behaviour and, in recent years, have also been shown to be involved in synaptic plasticity. In the brain, the regulation of ionotropic glutamate receptors has consequences for excitatory neurotransmission. Oestrogen regulation of the N-methyl-d-aspartate receptor subunit 2D (NR2D) has generated considerable interest as a possible molecular mechanism by which synaptic plasticity can be modulated. Since more than one isoform of the oestrogen receptor (ER) exists in mammals, it is possible that oestrogen regulation via the ERalpha and ERbeta isoforms on the NR2D oestrogen response element (ERE) is not equivalent. In the kidney fibroblast (CV1) cell line, we show that in response to 17beta-oestradiol, only ERalpha, not ERbeta, could upregulate transcription from the ERE which is in the 3' untranslated region of the NR2D gene. When this ERE is in the 5' position, neither ERalpha nor ERbeta showed transactivation capacity. Thyroid hormone receptor (TR) modulation of ER mediated induction has been shown for other ER target genes, such as the preproenkephalin and oxytocin receptor genes. Since the various TR isoforms exhibit distinct roles, we hypothesized that TR modulation of ER induction may also be isoform specific. This is indeed the case. The TRalpha1 isoform stimulated ERalpha mediated induction from the 3'-ERE whereas the TRbeta1 isoform inhibited this induction. This study shows that isoforms of both the ER and TR have different transactivation properties. Such flexible regulation and crosstalk by nuclear receptor isoforms leads to different transcriptional outcomes and the combinatorial logic may aid neuroendocrine integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of thyroid hormone on estrogen actions has been demonstrated both in vivo and in vitro. In transient transfection assays, the effects of liganded thyroid hormone receptors (TR) on transcriptional facilitation by estrogens bound to estrogen receptors (ER) display specificity according to the following: 1) ER isoform, 2) TR isoform, 3) the promoter through which transcriptional facilitation occurs, and 4) cell type. Some of these molecular phenomena may be related to thyroid hormone signaling of seasonal limitations upon reproduction. The various combinations of these molecular interactions provide multiple and flexible opportunities for relations between two major hormonal systems important for neuroendocrine feedbacks and reproductive behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the vertebrate brain, the thalamus serves as a relay and integration station for diverse neuronal information en route from the periphery to the cortex. Deficiency of TH during development results in severe cerebral abnormalities similar to those seen in the mouse when the retinoic acid receptor (ROR)α gene is disrupted. To investigate the effect of the thyroid hormone recep-tors (TRs) on RORalpha gene expression, we used intact male mice, in which the genes encoding the α and beta TRs have been deleted. In situ hybridization for RORalpha mRNA revealed that this gene is expressed in specific areas of the brain including the thalamus, pons, cerebellum, cortex, and hippocampus. Our quantitative data showed differences in RORalpha mRNA expression in different subthalamic nuclei between wild-type and knock-out mice. For example, the centromedial nucleus of the thalamus, which plays a role in mediating nociceptive and visceral information from the brainstem to the basal ganglia and cortical regions, has less expression of RORalpha mRNA in the knockout mice (-37%) compared to the wild-type controls. Also, in the dorsal geniculate (+72%) and lateral posterior nuclei (+58%) we found more RORalpha mRNA in dKO as compared to dWT animals. Such differences in RORalpha mRNA expression may play a role in the behavioral alterations resulting from congenital hypothyroidism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thyroid hormones (T) and estrogens (E) are nuclear receptor ligands with at least two molecular mechanisms of action: (i) relatively slow genomic effects, such as the regulation of transcription by cognate T receptors (TR) and E receptors (ER); and (ii) relatively rapid nongenomic effects, such as kinase activation and calcium release initiated at the membrane by putative membrane receptors. Genomic and nongenomic effects were thought to be disparate and independent. However, in a previous study using a two-pulse paradigm in neuroblastoma cells, we showed that E acting at the membrane could potentiate transcription from an E-driven reporter gene in the nucleus. Because both T and E can have important effects on mood and cognition, it is possible that the two hormones can act synergistically. In this study, we demonstrate that early actions of T via TRalpha1 and TRbeta1 can potentiate E-mediated transcription (genomic effects) from a consensus E response element (ERE)-driven reporter gene in transiently transfected neuroblastoma cells. Such potentiation was reduced by inhibition of mitogen-activated protein kinase. Using phosphomutants of ERalpha, we also show that probable mitogen-activated protein kinase phosphorylation sites on the ERalpha, the serines at position 167 and 118, are important in TRbeta1-mediated potentiation of ERalpha-induced transactivation. We suggest that crosstalk between T and E includes potential interactions through both nuclear and membrane-initiated molecular mechanisms of hormone signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogens and thyroid hormones are regulators of important diverse physiological processes such as reproduction, thermogenesis, neural development, neural differentiation and cardiovascular functions. Both are ligands for receptors in the nuclear receptor superfamily, which act as ligand-dependent transcription factors, regulating transcription. However, estrogens and thyroid hormones also rapidly (within minutes or seconds) activate kinase cascades and calcium increases, presumably initiated at the cell membrane. We discuss the relevance of both modes of hormone action, including the membrane estrogen receptor, to physiology, with particular reference to lordosis behavior. We first showed that estrogen restricted to the membrane can, in fact, lead to subsequent increases in transcription from a consensus estrogen response element-based reporter in the neuroblastoma cell line, SK-N-BE(2)C. Using a novel hormonal paradigm, we also showed that the activation of protein kinase A, protein kinase C, mitogen activated protein kinase and increases in calcium were important in the ability of the membrane-limited estrogen to potentiate transcription. We discuss the source of calcium important in transcriptional potentiation. Since estrogens and thyroid hormones have common effects on neuroprotection, cognition and mood, we also hypothesized that crosstalk could occur between the rapid actions of thyroid hormones and the genomic actions of estrogens. In neural cells, we showed that triiodothyronine acting rapidly via MAPK can increase transcription by the nuclear estrogen receptor ERa from a consensus estrogen response element, possibly by the phosphorylation of the ERa. Novel mechanisms that link signals initiated by hormones from the membrane to the nucleus are physiologically relevant and can achieve neuroendocrine integration

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thyroid hormones influence both neuronal development and anxiety via the thyroid hormone receptors (TRs). The TRs are encoded by two different genes, TRalpha and TRbeta. The loss of TRalpha1 is implicated in increased anxiety in males, possibly via a hippocampal increase in GABAergic activity. We compared both social behaviors and two underlying and related non-social behaviors, state anxiety and responses to acoustic and tactile startle in the gonadally intact TRalpha1 knockout (alpha1KO) and TRbeta (betaKO) male mice to their wild-type counterparts. For the first time, we show an opposing effect of the two TR isoforms, TRalpha1 and TRbeta, in the regulation of state anxiety, with alpha1 knockout animals (alpha1KO) showing higher levels of anxiety and betaKO males showing less anxiety compared to respective wild-type mice. At odds with the increased anxiety in non-social environments, alpha1KO males also show lower levels of responsiveness to acoustic and tactile startle stimuli. Consistent with the data that T4 is inhibitory to lordosis in female mice, we show subtly increased sex behavior in alpha1KO male mice. These behaviors support the idea that TRalpha1 could be inhibitory to ERalpha driven transcription that ultimately impacts ERalpha driven behaviors such as lordosis. The behavioral phenotypes point to novel roles for the TRs, particularly in non-social behaviors such as state anxiety and startle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anxiety and cognition are both linked to deficits in thyroid hormone concentrations in humans and in rodent models. Both processes have also been shown to be affected by the loss of the thyroid hormone receptors (TR) or by mutant transgenic TRs. Specifically, the unbalanced action of the unliganded TRα1 is thought to be important in the memory deficit and extreme anxiety seen in transgenic mice. The contribution of TRβ is less well defined and the molecular mechanisms that underlie these deficits are also unknown. We review the literature that demonstrates the importance of the thyroid hormone (TH) and the TR in these processes and focus on the mechanisms, in particular adult hippocampal neurogenesis in the dentate gyrus, that might be important in mediating both state anxiety and cognition by thyroid hormone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thyroid hormone levels are implicated in mood disorders in the adult human but the mechanisms remain unclear partly because, in rodent models, more attention has been paid to the consequences of perinatal hypo and hyperthyroidism. Thyroid hormones act via the thyroid hormone receptor (TR) alpha and beta isoforms, both of which are expressed in the limbic system. TR's modulate gene expression via both unliganded and liganded actions. Though the thyroid hormone receptor (TR) knockouts and a transgenic TRalpha1 knock-in mouse have provided us valuable insight into behavioral phenotypes such as anxiety and depression, it is not clear if this is because of the loss of unliganded actions or liganded actions of the receptor or due to locomotor deficits. We used a hypothyroid mouse model and supplementation with tri-iodothyronine (T3) or thyroxine (T4) to investigate the consequences of dysthyroid hormone levels on behaviors that denote anxiety. Our data from the open field and the light-dark transition tests suggest that adult onset hypothyroidism in male mice produces a mild anxiogenic effect that is possibly due to unliganded receptor actions. T3 or T4 supplementation reverses this phenotype and euthyroid animals show anxiety that is intermediate between the hypothyroid and thyroid hormone supplemented groups. In addition, T3 but not T4 supplemented animals have lower spine density in the CA1 region of the hippocampus and in the central amygdala suggesting that T3-mediated rescue of the hypothyroid state might be due to lower neuronal excitability in the limbic circuit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose of review Novel analyses of the relations between thyroid hormone receptor signaling and estrogen receptor—dependent mechanisms are timely for two sets of reasons. Clinically, both affect mood and foster neuronal growth and regeneration. Mechanistically, they overlap at the levels of DNA recognition elements, coactivators, and signal transduction systems. Crosstalk between thyroid hormone receptors and estrogen receptors is possibly important to integrate external signals to transcription within neurons. Recent findings It has been shown that reproductive functions, including behaviors, driven by estrogens can be antagonized by thyroid hormones, and it has been argued that such crosstalk is biologically adaptive to ensure optimal reproduction. Transcriptional facilitation during transient transfunction studies show that the interactions between thyroid receptor isoforms and estrogen receptor isoforms depend on cell type and promoter context. Overall, this pattern of interactions assures multiple and flexible means of transcriptional regulation. Surprisingly, in some brain areas, thyroid hormone actions can synergize with estrogenic effects, particularly when nongenomic modes of action are considered, such as kinase activation, which, as has been reported, affect later estrogen receptor—induced genomic events. Summary In summary, recent work with nerve cells has contributed to a paradigm shift in how the molecular and behavioral effects of hormones which act through nuclear receptors are viewed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mechanisms and consequences of the effects of estrogen on the brain have been studied both at the fundamental level and with therapeutic applications in mind. Estrogenic hormones binding in particular neurons in a limbic-hypothalamic system and their effects on the electrophysiology and molecular biology of medial hypothalamic neurons were central in establishing the first circuit for a mammalian behavior, the female-typical mating behavior, lordosis. Notably, the ability of estradiol to facilitate transcription from six genes whose products are important for lordosis behavior proved that hormones can turn on genes in specific neurons at specific times, with sensible behavioral consequences. The use of a gene knockout for estrogen receptor alpha (ERalpha) revealed that homozygous mutant females simply would not do lordosis behavior and instead were extremely aggressive, thus identifying a specific gene as essential for a mammalian social behavior. In dramatic contrast, ERbeta knockout females can exhibit normal lordosis behavior. With the understanding, in considerable mechanistic detail, of how the behavior is produced, now we are also studying brain mechanisms for the biologically adaptive influences which constrain reproductive behavior. With respect to cold temperatures and other environmental or metabolic circumstances which are not consistent with successful reproduction, we are interested in thyroid hormone effects in the brain. Competitive relations between two types of transcription factors - thyroid hormone receptors and estrogen receptors have the potential of subserving the blocking effects of inappropriate environmental circumstances on female reproductive behaviors. TRs can compete with ERalpha both for DNA binding to consensus and physiological EREs and for nuclear coactivators. In the presence of both TRs and ERs, in transfection studies, thyroid hormone coadministration can reduce estrogen-stimulated transcription. These competitive relations apparently have behavioral consequences, as thyroid hormones will reduce lordosis, and a TRbeta gene knockout will increase it. In sum, we not only know several genes that participate in the selective control of this sex behavior, but also, for two genes, we know the causal routes. Estrogenic hormones are also the foci of widespread attention for their potential therapeutic effects improving, for example, certain aspects of mood and cognition. The former has an efficient animal analog, demonstrated by the positive effects of estrogen in the Porsolt forced swim test. The latter almost certainly depends upon trophic actions of estrogen on several fundamental features of nerve cell survival and growth. The hypothesis is raised that the synaptic effects of estrogens are secondary to the trophic actions of this type of hormone in the nucleus and nerve cell body.