7 resultados para Symptomatic Glial Cysts
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background: The objective was to evaluate the efficacy and tolerability of donepezil (5 and 10 mg/day) compared with placebo in alleviating manifestations of mild to moderate Alzheimer's disease (AD). Method: A systematic review of individual patient data from Phase II and III double-blind, randomised, placebo-controlled studies of up to 24 weeks and completed by 20 December 1999. The main outcome measures were the ADAS-cog, the CIBIC-plus, and reports of adverse events. Results: A total of 2376 patients from ten trials were randomised to either donepezil 5 mg/day (n = 821), 10 mg/day (n = 662) or placebo (n = 893). Cognitive performance was better in patients receiving donepezil than in patients receiving placebo. At 12 weeks the differences in ADAS-cog scores were 5 mg/day-placebo: - 2.1 [95% confidence interval (CI), - 2.6 to - 1.6; p < 0.001], 10 mg/day-placebo: - 2.5 ( - 3.1 to - 2.0; p < 0.001). The corresponding results at 24 weeks were - 2.0 ( - 2.7 to - 1.3; p < 0.001) and - 3.1 ( - 3.9 to - 2.4; p < 0.001). The difference between the 5 and 10 mg/day doses was significant at 24 weeks (p = 0.005). The odds ratios (OR) of improvement on the CIBIC-plus at 12 weeks were: 5 mg/day-placebo 1.8 (1.5 to 2.1; p < 0.001), 10 mg/day-placebo 1.9 (1.5 to 2.4; p < 0.001). The corresponding values at 24 weeks were 1.9 (1.5 to 2.4; p = 0.001) and 2.1 (1.6 to 2.8; p < 0.001). Donepezil was well tolerated; adverse events were cholinergic in nature and generally of mild severity and brief in duration. Conclusion: Donepezil (5 and 10 mg/day) provides meaningful benefits in alleviating deficits in cognitive and clinician-rated global function in AD patients relative to placebo. Increased improvements in cognition were indicated for the higher dose. Copyright © 2004 John Wiley & Sons, Ltd.
Resumo:
The neuroprotective effects of flavonoids will ultimately depend on their interaction with both neuronal and glial cells. in this study, we show that the potential neurotoxic effects of quercetin are modified by glial cell interactions. Specifically, quercetin is rapidly conjugated to glutathione within glial cells to yield 2 '-glutathionyl-quercetin, which is exported from cells but has significantly reduced neurotoxicity. In addion, quercetin underwent intracellular O-methylation to yield 3 '-O-methyl-quercetin and 4 '-O-methyl-quercetin, although these were not exported from glia at the same rate as the glutathionyl adduct. The neurotoxic potential of both quercetin and 2 '-glutathionyl-quercetin paralleled their ability to modulate the pro-survival Akt/PKB and extracellular signal-regulated kinase (ERK) signalling pathways. These data were supported by co-culture investigation, where the neurotoxic effects of quercetin were significantly reduced when they were cultured alongside glial cells. We propose that glial cells act to protect neurons against the neurotoxic effects of quercetin and that 2 '-glutathionyl-quercetin represents a novel quercetin metabolite. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Neuroinflammation plays an integral role in the progression of neurodegeneration. In this study we investigated the anti-inflammatory effects of different classes of flavonoids (flavanones, flavanols and anthocyanidins) in primary mixed glial cells. We found that the flavanones naringenin and hesperetin and the flavols (+)-catechin and (-)-epicatechin, but not the anthocyanidins cyanidin and pelargonidin, attenuated LPS/IFN-gamma-induced TNF-alpha production in glial cells. Naringenin also inhibited LPS/IFN-gamma-induced iNOS expression and nitric oxide production in glial cells, thus showing the strongest antiinflammatory activity among all flavonoids tested. Moreover, naringenin protected against inflammatory-induced neuronal death in a primary neuronal-glial co-culture system. Naringenin also inhibited LPS/IFN-gamma-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation and downstream signal transducer and activator of transcription-1 (STAT-1) in LPS/IFN-gamma stimulated primary mixed glial cells. Taken together, our results suggest that naringenin may produce an anti-inflammatory effect in LPS/IFN-gamma stimulated glial cells that may be due to its interaction with p38 signalling cascades and the STAT-I trascription factor. (C) 2009 Elseiver Inc. All rights reserved.
Resumo:
The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.
Resumo:
The increasing use of patterned neural networks in multielectrode arrays and similar devices drives the constant development and evaluation of new biomaterials. Recently, we presented a promising technique to guide neurons and glia reliably and effectively. Parylene-C, a common hydrophobic polymer, was photolithographically patterned on silicon oxide (SiO2) and subsequently activated via immersion in serum. In this article, we explore the effects of ultraviolet (UV)-induced oxidation on parylene's ability to pattern neurons and glia. We exposed parylene-C stripe patterns to increasing levels of UV radiation and found a dose-dependent reduction in the total mass of patterned cells, as well as a gradual loss of glial and neuronal conformity to the patterns. In contrast, nonirradiated patterns had superior patterning results and increased presence of cells. The reduced cell adhesion and patterning after the formation of aldehyde and carboxyl groups on UV-radiated parylene-C supports our hypothesis that cell adhesion and growth on parylene is facilitated by hydrophobic adsorption of serum proteins. We conclude that unlike other cell patterning schemes, our technique does not rely on photooxidation of the polymer. Nonetheless, the precise control of oxygenated groups on parylene could pave the way for the differential binding of proteins and other molecules on the surface, aiding in the adhesion of alternative cell types. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010
Resumo:
This paper explores the long term development of networks of glia and neurons on patterns of Parylene-C on a SiO2 substrate. We harvested glia and neurons from the Sprague-Dawley (P1–P7) rat hippocampus and utilized an established cell patterning technique in order to investigate cellular migration, over the course of 3 weeks. This work demonstrates that uncontrolled glial mitosis gradually disrupts cellular patterns that are established early during culture. This effect is not attributed to a loss of protein from the Parylene-C surface, as nitrogen levels on the substrate remain stable over 3 weeks. The inclusion of the anti-mitotic cytarabine (Ara-C) in the culture medium moderates glial division and thus, adequately preserves initial glial and neuronal conformity to underlying patterns. Neuronal apoptosis, often associated with the use of Ara-C, is mitigated by the addition of brain derived neurotrophic factor (BDNF). We believe that with the right combination of glial inhibitors and neuronal promoters, the Parylene-C based cell patterning method can generate structured, active neural networks that can be sustained and investigated over extended periods of time. To our knowledge this is the first report on the concurrent application of Ara-C and BDNF on patterned cell cultures.
Resumo:
Monolayers of neurons and glia have been employed for decades as tools for the study of cellular physiology and as the basis for a variety of standard toxicological assays. A variety of three dimensional (3D) culture techniques have been developed with the aim to produce cultures that recapitulate desirable features of intact. In this study, we investigated the effect of preparing primary mouse mixed neuron and glial cultures in the inert 3D scaffold, Alvetex. Using planar multielectrode arrays, we compared the spontaneous bioelectrical activity exhibited by neuroglial networks grown in the scaffold with that seen in the same cells prepared as conventional monolayer cultures. Two dimensional (monolayer; 2D) cultures exhibited a significantly higher spike firing rate than that seen in 3D cultures although no difference was seen in total signal power (<50 Hz) while pharmacological responsiveness of each culture type to antagonism of GABAAR, NMDAR and AMPAR was highly comparable. Interestingly, correlation of burst events, spike firing and total signal power (<50 Hz) revealed that local field potential events were associated with action potential driven bursts as was the case for 2D cultures. Moreover, glial morphology was more physiologically normal in 3D cultures. These results show that 3D culture in inert scaffolds represents a more physiologically normal preparation which has advantages for physiological, pharmacological, toxicological and drug development studies, particularly given the extensive use of such preparations in high throughput and high content systems.