6 resultados para Surficial Alunite

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper maps the carbonate geochemistry of the Makgadikgadi Pans region of northern Botswana from moderate resolution (500 m pixels) remotely sensed data, to assess the impact of various geomorphological processes on surficial carbonate distribution. Previous palaeo-environmental studies have demonstrated that the pans have experienced several highstands during the Quaternary, forming calcretes around shoreline embayments. The pans are also a significant regional source of dust, and some workers have suggested that surficial carbonate distributions may be controlled, in part, by wind regime. Field studies of carbonate deposits in the region have also highlighted the importance of fluvial and groundwater processes in calcrete formation. However, due to the large area involved and problems of accessibility, the carbonate distribution across the entire Makgadikgadi basin remains poorly understood. The MODIS instrument permits mapping of carbonate distribution over large areas; comparison with estimates from Landsat Thematic Mapper data show reasonable agreement, and there is good agreement with estimates from laboratory analysis of field samples. The results suggest that palaeo-lake highstands, reconstructed here using the SRTM 3 arc-second digital elevation model, have left behind surficial carbonate deposits, which can be mapped by the MODIS instrument. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The particle size distributions of surface soils from two cultivated silty fields (Moorfield and Railway South) in Herefordshire, UK, were assessed by sampling on 20-m grids across the fields. Moorfield (8 ha) had a uniform landscape sloping mainly in a North-South direction while Railway South (12 ha) had complex undulating landscape characteristics. Samples from 3 surficial layers were also taken at 3 landscape positions at Moorfield to investigate recent (within-season) soil particle redistribution. Size fractions were determined using chemical dispersion, wet sieving (to separate the sand fractions) and laser gramilometry (for the finer fractions). The distribution of various fractions and the relationships between elevation and the various fractions suggest preferential detachment and movement of coarse to very coarse silt fractions (16-63 mu m), which were found mostly at downslope or depositional areas. Upper slope samples had higher clay to fine silt (< 16 mu m) contents than bottom slope samples. The upslope-downslope patterns of size fractions, particularly on uniformly sloping areas, of the 2 fields were similar and their deposited sediments were dominated by coarse silt fractions. Samples from 3 landscape positions at Moorfield became coarser from the less eroded summit, through the eroding side-slope to the bottom-slope depositional area. Within each of these landscape positions the top 0-2.5 cm layers were more enriched in coarse silt fractions than the bottom layers. The spatial patterns of soil particle size distributions in the 2 fields may be a result of sediment detachment and deposition caused by water erosion and tillage operations. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Southern Tunisia contains one of the most extensive gypsum accumulations in Africa comprising Triassic, Cretaceous, Eocene and Mio-Pliocene marine evaporites, spring deposits, playa sediments, aeolian sands and gypsum crusts. Sulphur isotope analysis (delta(34)S) of bedrock samples, groundwater, playa brines, playa sediments, and gypsiferous crusts provides insight into the sources of gypsum in the region and sheds light on the processes that lead to gypsum crust formation. Results Suggest that recycling of marine gypsum is the most likely source of the sulphate in the groundwater, playa sediments and crusts. The low PS values found in Eocene and Mio-Pliocene samples suggest that this recycling has been going on for millions of years. Though bedrock appears to be the ultimate source of the gypsum in the crusts, transport of this sulphate to playas, concentration therein, and subsequent dispersal across the landscape by aeolian processes provides the most likely pathway for surticial gypsum crust formation. Comparison of these results with those from Australia, Chile and Namibia suggests that, although the source of the sulphur varies from region to region, the processes of surficial crust formation appear to be similar. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper maps the carbonate geochemistry of the Makgadikgadi Pans region of northern Botswana from moderate resolution (500 m pixels) remotely sensed data, to assess the impact of various geomorphological processes on surficial carbonate distribution. Previous palaeo-environmental studies have demonstrated that the pans have experienced several highstands during the Quaternary, forming calcretes around shoreline embayments. The pans are also a significant regional source of dust, and some workers have suggested that surficial carbonate distributions may be controlled, in part, by wind regime. Field studies of carbonate deposits in the region have also highlighted the importance of fluvial and groundwater processes in calcrete formation. However, due to the large area involved and problems of accessibility, the carbonate distribution across the entire Makgadikgadi basin remains poorly understood. The MODIS instrument permits mapping of carbonate distribution over large areas; comparison with estimates from Landsat Thematic Mapper data show reasonable agreement, and there is good agreement with estimates from laboratory analysis of field samples. The results suggest that palaeo-lake highstands, reconstructed here using the SRTM 3 arc-second digital elevation model, have left behind surficial carbonate deposits, which can be mapped by the MODIS instrument. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims Current estimates of soil organic carbon (SOC) are based largely on surficial measurements to depths of 0.3 to 1 m. Many of the world’s soils greatly exceed 1 m depth and there are numerous reports of biological activity to depths of many metres. Although SOC storage to depths of up to 8 m has been previously reported, the extent to which SOC is stored at deeper depths in soil profiles is currently unknown. This paper aims to provide the first detailed analysis of these previously unreported stores of SOC. Methods Soils from five sites in the deeply weathered regolith in the Yilgarn Craton of south-western Australia were sampled and analysed for total organic carbon by combustion chromatography. These soils ranged between 5 and 38 m (mean 21 m) depth to bedrock and had been either recently reforested with Pinus pinaster or were under agriculture. Sites had a mean annual rainfall of between 399 and 583 mm yr−1. Results The mean SOC concentration across all sites was 2.30 ± 0.26 % (s.e.), 0.41 ± 0.05 % and 0.23 ± 0.04 % in the surface 0.1, 0.1–0.5 and 0.5 to 1.0 m increments, respectively. The mean value between 1 and 5 m was 0.12 ± 0.01 %, whereas between 5 and 35 m the values decreased from 0.04 ± 0.002 % to 0.03 ± 0.003 %. Mean SOC mass densities for each of the five locations varied from 21.8–37.5 kg C m−2, and were in toto two to five times greater than would be reported with sampling to a depth of 0.5 m. Conclusions This finding may have major implications for estimates of global carbon storage and modelling of the potential global impacts of climate change and land-use change on carbon cycles. The paper demonstrates the need for a reassessment of the current arbitrary shallow soil sampling depths for assessing carbon stocks, a revision of global SOC estimates and elucidation of the composition and fate of deep carbon in response to land use and climate change

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term monitoring of surface water quality has shown increasing concentrations of Dissolved Organic Carbon (DOC) across a large part of the Northern Hemisphere. Several drivers have been implicated including climate change, land management change, nitrogen and sulphur deposition and CO2 enrichment. Analysis of stream water data, supported by evidence from laboratory studies, indicates that an effect of declining sulphur deposition on catchment soil chemistry is likely to be the primary mechanism, but there are relatively few long term soil water chemistry records in the UK with which to investigate this, and other, hypotheses directly. In this paper, we assess temporal relationships between soil solution chemistry and parameters that have been argued to regulate DOC production and, using a unique set of co-located measurements of weather and bulk deposition and soil solution chemistry provided by the UK Environmental Change Network and the Intensive Forest Monitoring Level II Network . We used statistical non-linear trend analysis to investigate these relationships at 5 forested and 4 non-forested sites from 1993 to 2011. Most trends in soil solution DOC concentration were found to be non-linear. Significant increases in DOC occurred mostly prior to 2005. The magnitude and sign of the trends was associated qualitatively with changes in acid deposition, the presence/absence of a forest canopy, soil depth and soil properties. The strongest increases in DOC were seen in acidic forest soils and were most clearly linked to declining anthropogenic acid deposition, while DOC trends at some sites with westerly locations appeared to have been influenced by shorter-term hydrological variation. The results indicate that widespread DOC increases in surface waters observed elsewhere, are most likely dominated by enhanced mobilization of DOC in surficial organic horizons, rather than changes in the soil water chemistry of deeper horizons. While trends in DOC concentrations in surface horizons have flattened out in recent years, further increases may be expected as soil chemistry continues to adjust to declining inputs of acidity.