21 resultados para Surface-Active Agents
em CentAUR: Central Archive University of Reading - UK
Resumo:
Surface properties of gluten proteins were measured in a dilation test and in compression and expansion tests. The results showed that monomeric gliadin was highly surface active, but polymer glutenin had almost no surface activity. The locations of those proteins in bread dough were investigated using confocal scanning laser microscopy and compared with polar and nonpolar lipids. Added gluten proteins participated in the formation of the film or the matrix, surrounding and separating individual gas cells in bread dough. Gliadin was found in the bulk of dough and gas 'cell walls'. Glutenin was found only in the bulk dough. Polar lipids were present in the protein matrix and in gas 'cell walls', as well as at the surface of some particles, which appeared to be starch granules. However, nonpolar lipid mainly occur-red on the surface of particles, which may be starch granules and small lipid droplets. It is suggested that the locations of gluten proteins in bread dough depends on their surface properties. Polar lipid participates the formation of gluten protein matrix and gas 'cell walls'. Nonpolar lipids may have an effect on the rheological properties by associating with starch granule surfaces and may form lipid droplets. (C) 2004 Published by Elsevier Ltd.
Resumo:
B. subtilis under certain types of media and fermentation conditions can produce surfactin, a biosurfactant which belongs to the lipopeptide class. Surfactin has exceptional surfactant activity, and exhibits some interesting biological characteristics such as antibacterial activity, antitumoral activity against ascites carcinoma cells, and a hypocholesterolemic activity that inhibits cAMP phosphodiesterase, as well as having anti-HIV properties. A cost effective recovery and purification of surfactin from fermentation broth using a two-step ultrafiltration (UF) process has been developed in order to reduce the cost of surfactin production. In this study, competitive adsorption of surfactin and proteins at the air-water interface was studied using surface pressure measurements. Small volumes of bovine serum albumin (BSA) and β-casein solutions were added to the air-water interface on a Langmuir trough and allowed to stabilise before the addition of surfactin to the subphase. Contrasting interfacial behaviour of proteins was observed with β-casein showing faster initial adsorption compared to BSA. On introduction of surfactin both proteins were displaced but a longer time were taken to displace β-casein. Overall the results showed surfactin were highly surface-active by forming a β-sheet structure at the air-water interface after reaching its critical micelle concentration (CMC) and were effective in removing both protein films, which can be explained following the orogenic mechanism. Results showed that the two-step UF process was effective to achieve high purity and fully functional surfactin.
Resumo:
Agricultural management of grassland in lowland Britain has changed fundamentally in the last 50 years, resulting in spatial and structural uniformity within the pastoral landscape. The full extent to which these changes may have reduced the suitability of grassland as foraging habitat for birds is unknown. This study investigated the mechanisms by which these changes have impacted on birds and their food supplies. We quantified field use by birds in summer and winter in two grassland areas of lowland England (Devon and Buckinghamshire) over 3 years, relating bird occurrence to the management, sward structure and seed and invertebrate food resources of individual fields. Management intensity was defined in terms of annual nitrogen input. There was no consistent effect of management intensity on total seed head production, although those of grasses generally increased with inputs while forbs were rare throughout. Relationships between management intensity and abundance of soil and epigeal invertebrates were complex. Soil beetle larvae were consistently lower in abundance, and surface-active beetle larvae counts consistently higher, in intensively managed fields. Foliar invertebrates showed more consistent negatively relationships with management intensity. Most bird species occurred at low densities. There were consistent relationships across regions and years between the occurrence of birds and measures of field management. In winter, there was a tendency towards higher occupancy of intensively managed fields by species feeding on soil invertebrates. In summer, there were few such relationships, although many species avoided fields with tall swards. Use of fields by birds was generally not related to measures of seed or invertebrate food abundance. While granivorous species were perhaps too rare to detect a relationship, in insectivores the strong negative relationships (in summer) with sward height suggested that access to food may be the critical factor. While it appears that intensification of grassland management has been deleterious to the summer food resources of insectivorous birds that use insects living within the grass sward, intensification may have been beneficial to several species in winter through the enhancement of soil invertebrates. Synthesis and applications. We suggest that attempts to restore habitat quality for birds in grassland landscapes need to create a range of management intensities and sward structures at the field and farm scales. A greater understanding of methods to enhance prey accessibility, as well as abundance, for insectivorous birds is required.
Resumo:
The oxidation of organic films on cloud condensation nuclei has the potential to affect climate and precipitation events. In this work we present a study of the oxidation of a monolayer of deuterated oleic acid (cis-9-octadecenoic acid) at the air-water interface by ozone to determine if oxidation removes the organic film or replaces it with a product film. A range of different aqueous sub-phases were studied. The surface excess of deuterated material was followed by neutron reflection whilst the surface pressure was followed using a Wilhelmy plate. The neutron reflection data reveal that approximately half the organic material remains at the air-water interface following the oxidation of oleic acid by ozone, thus cleavage of the double bond by ozone creates one surface active species and one species that partitions to the bulk (or gas) phase. The most probable products, produced with a yield of similar to(87 +/- 14)%, are nonanoic acid, which remains at the interface, and azelaic acid (nonanedioic acid), which dissolves into the bulk solution. We also report a surface bimolecular rate constant for the reaction between ozone and oleic acid of (7.3 +/- 0.9) x 10(-11) cm(2) molecule s(-1). The rate constant and product yield are not affected by the solution sub-phase. An uptake coefficient of ozone on the oleic acid monolayer of similar to 4 x 10(-6) is estimated from our results. A simple Kohler analysis demonstrates that the oxidation of oleic acid by ozone on an atmospheric aerosol will lower the critical supersaturation needed for cloud droplet formation. We calculate an atmospheric chemical lifetime of oleic acid of 1.3 hours, significantly longer than laboratory studies on pure oleic acid particles suggest, but more consistent with field studies reporting oleic acid present in aged atmospheric aerosol.
Resumo:
Sunflower oil-in-water emulsions containing TBHQ, caffeic acid, epigallocatechin gallate (EGCG), or 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), both with and without BSA, were stored at 50 and 30degreesC. Oxidation of the oil was monitored by determination of the PV, conjugated diene content, and hexanal formation. Emulsions containing EGCG, caffeic acid, and, to a lesser extent, Trolox were much more stable during storage in the presence of BSA than in its absence even though BSA itself did not provide an antioxidant effect. BSA did not have a synergistic effect on the antioxidant activity of TBHQ. The BSA structure changed, with a considerable loss of fluorescent tryptophan groups during storage of solutions containing BSA and antioxidants, and a BSA-antioxidant adduct with radical-scavenging activity was formed. The highest radical-scavenging activity observed was for the isolated protein from a sample containing EGCG and BSA incubated at 30degreesC for 10 d. This fraction contained unchanged BSA as well as BSA-antioxidant adduct, but 95.7% of the initial fluorescence had been lost, showing that most of the BSA had been altered. It can be concluded that BSA exerts its synergistic effect with antioxidants because of formation of a protein-antioxidant adduct during storage, which is concentrated at the oil-water interface owing to the surface-active nature of the protein.
Resumo:
The structural and reactive properties of the acetyl-protected "one-legged" manganese porphyrin [SAc]P-Mn(III)Cl on Ag(100) have been studied by NEXAFS, synchrotron XPS and STM Spontaneous surface-mediated deprotection occurs at 300 K accompanied by spreading of the resulting thio-tethered porphyrin across the metal surface Loss of the axial chlorine ligand occurs at 498 K, without any demetalation of the macrocycle, leaving the Mn center in a low co-ordination state At low coverages the macrocycle is markedly tilted toward the silver surface, as is the phenyl group that forms part of the tethering "leg". In the monolayer region a striking transition occurs whereby the molecule rolls over, preserving the tilt angle of the phenyl group, strongly increasing that of the macrocycle, decreasing the apparent height of the molecule and decreasing its footprint, thus enabling closer packing These findings are in marked contrast with those previously reported for the corresponding more rigidly bound four-legged porphyrin [Turner, M., Vaughan, O. P. H., Kyriakou, G., Watson, D. J., Scherer, L. J; Davidson, G J. E, Sanders, J. K. M.; Lambert, R. M J. Am. Chem Soc 2009, 131, 1910] suggesting that the physicochemical :)properties and potential applications of these versatile systems should be strongly dependent on the mode of tethering to the surface.
Resumo:
The adsorption and subsequent thermal chemistry of the acetyl-protected manganese porphyrin, [SA(C)](4)P-Mn(III)Cl on Ag(100) have been studied by high resolution XPS and temperature-programmed desorption. The deprotection event, leading to formation of the covalently bound thioporphyrin, has been characterized and the conditions necessary for removal of the axial chlorine ligand have been determined, thus establishing a methodology for creating tethered activated species that could serve as catalytic sites for delicate oxidation reactions. Surface-mediated acetyl deprotection occurs at 298 K, at which temperature porphyrin diffusion is limited. At temperatures above similar to 425 K porphyrin desorption, diffusion and deprotection occur and at >470 K the axial chlorine is removed.
Resumo:
Many atmospheric constituents besides carbon dioxide (CO2) contribute to global warming, and it is common to compare their influence on climate in terms of radiative forcing, which measures their impact on the planetary energy budget. A number of recent studies have shown that many radiatively active constituents also have important impacts on the physiological functioning of ecosystems, and thus the ‘ecosystem services’ that humankind relies upon. CO2 increases have most probably increased river runoff and had generally positive impacts on plant growth where nutrients are non-limiting, whereas increases in near-surface ozone (O3) are very detrimental to plant productivity. Atmospheric aerosols increase the fraction of surface diffuse light, which is beneficial for plant growth. To illustrate these differences, we present the impact on net primary productivity and runoff of higher CO2, higher near-surface O3, and lower sulphate aerosols, and for equivalent changes in radiative forcing.We compare this with the impact of climate change alone, arising, for example, from a physiologically inactive gas such as methane (CH4). For equivalent levels of change in radiative forcing, we show that the combined climate and physiological impacts of these individual agents vary markedly and in some cases actually differ in sign. This study highlights the need to develop more informative metrics of the impact of changing atmospheric constituents that go beyond simple radiative forcing.
Resumo:
In the Radiative Atmospheric Divergence Using ARM Mobile Facility GERB and AMMA Stations (RADAGAST) project we calculate the divergence of radiative flux across the atmosphere by comparing fluxes measured at each end of an atmospheric column above Niamey, in the African Sahel region. The combination of broadband flux measurements from geostationary orbit and the deployment for over 12 months of a comprehensive suite of active and passive instrumentation at the surface eliminates a number of sampling issues that could otherwise affect divergence calculations of this sort. However, one sampling issue that challenges the project is the fact that the surface flux data are essentially measurements made at a point, while the top-of-atmosphere values are taken over a solid angle that corresponds to an area at the surface of some 2500 km2. Variability of cloud cover and aerosol loading in the atmosphere mean that the downwelling fluxes, even when averaged over a day, will not be an exact match to the area-averaged value over that larger area, although we might expect that it is an unbiased estimate thereof. The heterogeneity of the surface, for example, fixed variations in albedo, further means that there is a likely systematic difference in the corresponding upwelling fluxes. In this paper we characterize and quantify this spatial sampling problem. We bound the root-mean-square error in the downwelling fluxes by exploiting a second set of surface flux measurements from a site that was run in parallel with the main deployment. The differences in the two sets of fluxes lead us to an upper bound to the sampling uncertainty, and their correlation leads to another which is probably optimistic as it requires certain other conditions to be met. For the upwelling fluxes we use data products from a number of satellite instruments to characterize the relevant heterogeneities and so estimate the systematic effects that arise from the flux measurements having to be taken at a single point. The sampling uncertainties vary with the season, being higher during the monsoon period. We find that the sampling errors for the daily average flux are small for the shortwave irradiance, generally less than 5 W m−2, under relatively clear skies, but these increase to about 10 W m−2 during the monsoon. For the upwelling fluxes, again taking daily averages, systematic errors are of order 10 W m−2 as a result of albedo variability. The uncertainty on the longwave component of the surface radiation budget is smaller than that on the shortwave component, in all conditions, but a bias of 4 W m−2 is calculated to exist in the surface leaving longwave flux.
Resumo:
A surface forcing response framework is developed that enables an understanding of time-dependent climate change from a surface energy perspective. The framework allows the separation of fast responses that are unassociated with global-mean surface air temperature change (ΔT), which is included in the forcing, and slow feedbacks that scale with ΔT. The framework is illustrated primarily using 2 × CO2 climate model experiments and is robust across the models. For CO2 increases, the positive downward radiative component of forcing is smaller at the surface than at the tropopause, and so a rapid reduction in the upward surface latent heat (LH) flux is induced to conserve the tropospheric heat budget; this reduces the precipitation rate. Analysis of the time-dependent surface energy balance over sea and land separately reveals that land areas rapidly regain energy balance, and significant land surface warming occurs before global sea temperatures respond. The 2 × CO2 results are compared to a solar increase experiment and show that some fast responses are forcing dependent. In particular, a significant forcing from the fast hydrological response found in the CO2 experiments is much smaller in the solar experiment. The different fast response explains why previous equilibrium studies found differences in the hydrological sensitivity between these two forcings. On longer time scales, as ΔT increases, the net surface longwave and LH fluxes provide positive and negative surface feedbacks, respectively, while the net surface shortwave and sensible heat fluxes change little. It is found that in contrast to their fast responses, the longer-term response of both surface energy fluxes and the global hydrological cycle are similar for the different forcing agents.
Resumo:
In this paper we present an architecture for network and applications management, which is based on the Active Networks paradigm and shows the advantages of network programmability. The stimulus to develop this architecture arises from an actual need to manage a cluster of active nodes, where it is often required to redeploy network assets and modify nodes connectivity. In our architecture, a remote front-end of the managing entity allows the operator to design new network topologies, to check the status of the nodes and to configure them. Moreover, the proposed framework allows to explore an active network, to monitor the active applications, to query each node and to install programmable traps. In order to take advantage of the Active Networks technology, we introduce active SNMP-like MIBs and agents, which are dynamic and programmable. The programmable management agents make tracing distributed applications a feasible task. We propose a general framework that can inter-operate with any active execution environment. In this framework, both the manager and the monitor front-ends communicate with an active node (the Active Network Access Point) through the XML language. A gateway service performs the translation of the queries from XML to an active packet language and injects the code in the network. We demonstrate the implementation of an active network gateway for PLAN (Packet Language for Active Networks) in a forty active nodes testbed. Finally, we discuss an application of the active management architecture to detect the causes of network failures by tracing network events in time.
Resumo:
Model catalysts of Pd nanoparticles and films on TiO2 (I 10) were fabricated by metal vapour deposition (MVD). Molecular beam measurements show that the particles are active for CO adsorption, with a global sticking probability of 0.25, but that they are deactivated by annealing above 600 K, an effect indicative of SMSI. The Pd nanoparticles are single crystals oriented with their (I 11) plane parallel to the surface plane of the titania. Analysis of the surface by atomic resolution STM shows that new structures have formed at the surface of the Pd nanoparticles and films after annealing above 800 K. There are only two structures, a zigzag arrangement and a much more complex "pinwheel" structure. The former has a unit cell containing 7 atoms, and the latter is a bigger unit cell containing 25 atoms. These new structures are due to an overlayer of titania that has appeared on the surface of the Pd nanoparticles after annealing, and it is proposed that the surface layer that causes the SMSI effect is a mixed alloy of Pd and Ti, with only two discrete ratios of atoms: Pd/Ti of 1: 1 (pinwheel) and 1:2 (zigzag). We propose that it is these structures that cause the SMSI effect. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
This paper focuses on improving computer network management by the adoption of artificial intelligence techniques. A logical inference system has being devised to enable automated isolation, diagnosis, and even repair of network problems, thus enhancing the reliability, performance, and security of networks. We propose a distributed multi-agent architecture for network management, where a logical reasoner acts as an external managing entity capable of directing, coordinating, and stimulating actions in an active management architecture. The active networks technology represents the lower level layer which makes possible the deployment of code which implement teleo-reactive agents, distributed across the whole network. We adopt the Situation Calculus to define a network model and the Reactive Golog language to implement the logical reasoner. An active network management architecture is used by the reasoner to inject and execute operational tasks in the network. The integrated system collects the advantages coming from logical reasoning and network programmability, and provides a powerful system capable of performing high-level management tasks in order to deal with network fault.
Resumo:
Improved display of foreign protein moieties in combination with beneficial alteration of the viral surface properties should be of value for targeted and enhanced gene delivery. Here, we describe a vector based on Autographa californica multiple nucleopolyhedrovirus (AcMNPV) displaying synthetic IgG-bincling domains (ZZ) of protein A fused to the transmembrane anchor of vesicular stomatitis virus (VSV) G protein. This display vector was equipped with a GFP/EGFP expression cassette enabling fluorescent detection in both insect and mammalian cells. The virus construct displayed the biologically active fusion protein efficiently and showed increased binding capacity to IgG. As the display is carried out using a membrane anchor of foreign origin, gp64 is left intact for virus entry, which may increase gene expression in the transduced mammalian cells. In addition, the viral vector can be targeted to any desired cell type via binding of ZZ domains when an appropriate IgG antibody is available.
Resumo:
Immobilised Os species prepared via chemical vapour deposition (CVD) of Os-3(CO)(12) onto MCM-41 are active and selective catalysts for the dihydroxylation of trans-stilbene in acetone and water, using N-methylmorpholine N-oxide as the oxidant. A detailed temperature programmed decomposition study of the solids enables to identify the active sites as Os-x(CO)(y) surface species. The initial loading of the MCM-41 with the trinuclear precursor, as well as the temperature of the post-synthesis oxidising treatment, are found to have a significant impact on the structure/geometry of the resulting surface species, and thus their catalytic properties. We show how it is also affected by the confined environment of the MCM-41 mesopores and especially the curvature of the 30 Angstrom diameter channels. Finally, a careful study of the catalytic properties of the materials together with a study of the reactivity of the reaction products under similar conditions enable to suggest a mechanism involving the reaction of the oxidant with the osmium carbonyl surface species to form the catalytically active Os-oxo sites, and the formation of an osmoate-type species (through adsorption of the alkene onto the Os-oxo site) which subsequently reacts with the solvent to produce the diol. (C) 2003 Elsevier B.V. All rights reserved.