6 resultados para Surface currents

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, the processes affecting sea surface temperature variability over the 1992–98 period, encompassing the very strong 1997–98 El Niño event, are analyzed. A tropical Pacific Ocean general circulation model, forced by a combination of weekly ERS1–2 and TAO wind stresses, and climatological heat and freshwater fluxes, is first validated against observations. The model reproduces the main features of the tropical Pacific mean state, despite a weaker than observed thermal stratification, a 0.1 m s−1 too strong (weak) South Equatorial Current (North Equatorial Countercurrent), and a slight underestimate of the Equatorial Undercurrent. Good agreement is found between the model dynamic height and TOPEX/Poseidon sea level variability, with correlation/rms differences of 0.80/4.7 cm on average in the 10°N–10°S band. The model sea surface temperature variability is a bit weak, but reproduces the main features of interannual variability during the 1992–98 period. The model compares well with the TAO current variability at the equator, with correlation/rms differences of 0.81/0.23 m s−1 for surface currents. The model therefore reproduces well the observed interannual variability, with wind stress as the only interannually varying forcing. This good agreement with observations provides confidence in the comprehensive three-dimensional circulation and thermal structure of the model. A close examination of mixed layer heat balance is thus undertaken, contrasting the mean seasonal cycle of the 1993–96 period and the 1997–98 El Niño. In the eastern Pacific, cooling by exchanges with the subsurface (vertical advection, mixing, and entrainment), the atmospheric forcing, and the eddies (mainly the tropical instability waves) are the three main contributors to the heat budget. In the central–western Pacific, the zonal advection by low-frequency currents becomes the main contributor. Westerly wind bursts (in December 1996 and March and June 1997) were found to play a decisive role in the onset of the 1997–98 El Niño. They contributed to the early warming in the eastern Pacific because the downwelling Kelvin waves that they excited diminished subsurface cooling there. But it is mainly through eastward advection of the warm pool that they generated temperature anomalies in the central Pacific. The end of El Niño can be linked to the large-scale easterly anomalies that developed in the western Pacific and spread eastward, from the end of 1997 onward. In the far-western Pacific, because of the shallower than normal thermocline, these easterlies cooled the SST by vertical processes. In the central Pacific, easterlies pushed the warm pool back to the west. In the east, they led to a shallower thermocline, which ultimately allowed subsurface cooling to resume and to quickly cool the surface layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The seasonal sea level variations observed from tide gauges over 1900-2013 and gridded satellite altimeter product AVISO over 1993-2013 in the northwest Pacific have been explored. The seasonal cycle is able to explain 60-90% of monthly sea level variance in the marginal seas, while it explains less than 20% of variance in the eddy-rich regions. The maximum annual and semi-annual sea level cycles (30cm and 6cm) are observed in the north of the East China Sea and the west of the South China Sea respectively. AVISO was found to underestimate the annual amplitude by 25% compared to tide gauge estimates along the coasts of China and Russia. The forcing for the seasonal sea level cycle was identified. The atmospheric pressure and the steric height produce 8-12cm of the annual cycle in the middle continental shelf and in the Kuroshio Current regions separately. The removal of the two attributors from total sea level permits to identify the sea level residuals that still show significant seasonality in the marginal seas. Both nearby wind stress and surface currents can explain well the long-term variability of the seasonal sea level cycle in the marginal seas and the tropics because of their influence on the sea level residuals. Interestingly, the surface currents are a better descriptor in the areas where the ocean currents are known to be strong. Here, they explain 50-90% of inter-annual variability due to the strong links between the steric height and the large-scale ocean currents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Between 1995 and 2000, on average 4 eddies per year are observed from satellite altimetry to propagate southward through the Mozambique Channel, into the upstream Agulhas region. Further south, these eddies have been found to control the timing and frequenc yof Agulhas ring shedding. Within the Mozambique Channel, anomalous SSH amplitudes rise to 30 cm ; in agreement with in situ measured velocities. Comparison of an observed velocit ysection with GCM model results shows that the Mozambique Channel eddies in these models are too surface intensified. Also, the number of eddies formed in the models is in disagreement with our observational analysis. Moored current meter measurements observing the passage of three eddies in 2000 are extended to a 5-year time series b yreferencing the anomalous surface currents estimated from altimeter data to a s ynoptic LADCP velocit y measurement. The results show intermittent edd ypassage at the mooring location. A statistical analysis of SSH observations in different parts of the Mozambique Channel shows a southward decrease of the dominant frequency of the variability, going from 7 per year in the extension of the South Equatorial Current north of Madagascar to 4 per year south of Madagascar. The observations suggest that frequency reduction is related to the Rossb ywaves coming in from the east

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In principle the global mean geostrophic surface circulation of the ocean can be diagnosed by subtracting a geoid from a mean sea surface (MSS). However, because the resulting mean dynamic topography (MDT) is approximately two orders of magnitude smaller than either of the constituent surfaces, and because the geoid is most naturally expressed as a spectral model while the MSS is a gridded product, in practice complications arise. Two algorithms for combining MSS and satellite-derived geoid data to determine the ocean’s mean dynamic topography (MDT) are considered in this paper: a pointwise approach, whereby the gridded geoid height field is subtracted from the gridded MSS; and a spectral approach, whereby the spherical harmonic coefficients of the geoid are subtracted from an equivalent set of coefficients representing the MSS, from which the gridded MDT is then obtained. The essential difference is that with the latter approach the MSS is truncated, a form of filtering, just as with the geoid. This ensures that errors of omission resulting from the truncation of the geoid, which are small in comparison to the geoid but large in comparison to the MDT, are matched, and therefore negated, by similar errors of omission in the MSS. The MDTs produced by both methods require additional filtering. However, the spectral MDT requires less filtering to remove noise, and therefore it retains more oceanographic information than its pointwise equivalent. The spectral method also results in a more realistic MDT at coastlines. 1. Introduction An important challenge in oceanography is the accurate determination of the ocean’s time-mean dynamic topography (MDT). If this can be achieved with sufficient accuracy for combination with the timedependent component of the dynamic topography, obtainable from altimetric data, then the resulting sum (i.e., the absolute dynamic topography) will give an accurate picture of surface geostrophic currents and ocean transports.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vertical conduction current flows in the atmosphere as a result of the global atmospheric electric circuit. The current at the surface consists of the conduction current and a locally generated displacement current, which are often approximately equal in magnitude. A method of separating the two currents using two collectors of different geometry is investigated. The picoammeters connected to the collectors have a RC time constant of approximately 3 s, permitting the investigation of higher frequency air-earth current changes than previously achieved. The displacement current component of the air-earth current derived from the instrument agrees with calculations using simultaneous data from a co-located fast response electric field mill. The mean value of the nondisplacement current measured over 9 h was 1.76 +/- 0.002 pA m(-2). (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade, due to the Gravity Recovery And Climate Experiment (GRACE) mission and, more recently, the Gravity and steady state Ocean Circulation Explorer (GOCE) mission, our ability to measure the ocean’s mean dynamic topography (MDT) from space has improved dramatically. Here we use GOCE to measure surface current speeds in the North Atlantic and compare our results with a range of independent estimates that use drifter data to improve small scales. We find that, with filtering, GOCE can recover 70% of the Gulf Steam strength relative to the best drifter-based estimates. In the subpolar gyre the boundary currents obtained from GOCE are close to the drifter-based estimates. Crucial to this result is careful filtering which is required to remove small-scale errors, or noise, in the computed surface. We show that our heuristic noise metric, used to determine the degree of filtering, compares well with the quadratic sum of mean sea surface and formal geoid errors obtained from the error variance–covariance matrix associated with the GOCE gravity model. At a resolution of 100 km the North Atlantic mean GOCE MDT error before filtering is 5 cm with almost all of this coming from the GOCE gravity model.