16 resultados para Supervised and Unsupervised Classification

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the ways that quality can be assessed in standing waters, a subject that has hitherto attracted little attention but which is now a legal requirement in Europe. It describes a scheme for the assessment and monitoring of water and ecological quality in standing waters greater than about I ha in area in England & Wales although it is generally relevant to North-west Europe. Thirteen hydrological, chemical and biological variables are used to characterise the standing water body in any current sampling. These are lake volume, maximum depth, onductivity, Secchi disc transparency, pH, total alkalinity, calcium ion concentration, total N concentration,winter total oxidised inorganic nitrogen (effectively nitrate) concentration, total P concentration, potential maximum chlorophyll a concentration, a score based on the nature of the submerged and emergent plant community, and the presence or absence of a fish community. Inter alia these variables are key indicators of the state of eutrophication, acidification, salinisation and infilling of a water body.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent years, the area of data mining has been experiencing considerable demand for technologies that extract knowledge from large and complex data sources. There has been substantial commercial interest as well as active research in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from large datasets. Artificial neural networks (NNs) are popular biologically-inspired intelligent methodologies, whose classification, prediction, and pattern recognition capabilities have been utilized successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction, and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks. © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research shows that speakers of languages with obligatory plural marking (English) preferentially categorize objects based on common shape, whereas speakers of nonplural-marking classifier languages (Yucatec and Japanese) preferentially categorize objects based on common material. The current study extends that investigation to the domain of bilingualism. Japanese and English monolinguals, and Japanese–English bilinguals were asked to match novel objects based on either common shape or color. Results showed that English monolinguals selected shape significantly more than Japanese monolinguals, whereas the bilinguals shifted their cognitive preferences as a function of their second language proficiency. The implications of these findings for conceptual representation and cognitive processing in bilinguals are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea-ice concentrations in the Laptev Sea simulated by the coupled North Atlantic-Arctic Ocean-Sea-Ice Model and Finite Element Sea-Ice Ocean Model are evaluated using sea-ice concentrations from Advanced Microwave Scanning Radiometer-Earth Observing System satellite data and a polynya classification method for winter 2007/08. While developed to simulate largescale sea-ice conditions, both models are analysed here in terms of polynya simulation. The main modification of both models in this study is the implementation of a landfast-ice mask. Simulated sea-ice fields from different model runs are compared with emphasis placed on the impact of this prescribed landfast-ice mask. We demonstrate that sea-ice models are not able to simulate flaw polynyas realistically when used without fast-ice description. Our investigations indicate that without landfast ice and with coarse horizontal resolution the models overestimate the fraction of open water in the polynya. This is not because a realistic polynya appears but due to a larger-scale reduction of ice concentrations and smoothed ice-concentration fields. After implementation of a landfast-ice mask, the polynya location is realistically simulated but the total open-water area is still overestimated in most cases. The study shows that the fast-ice parameterization is essential for model improvements. However, further improvements are necessary in order to progress from the simulation of large-scale features in the Arctic towards a more detailed simulation of smaller-scaled features (here polynyas) in an Arctic shelf sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of the crowd image analysis challenge of the Winter PETS 2009 workshop. The evaluation is carried out using a selection of the metrics developed in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium [13]. The evaluation highlights the detection and tracking performance of the authors’systems in areas such as precision, accuracy and robustness. The performance is also compared to the PETS 2009 submitted results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of the crowd image analysis challenge of the PETS2010 workshop. The evaluation was carried out using a selection of the metrics developed in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The PETS 2010 evaluation was performed using new ground truthing create from each independant two dimensional view. In addition, the performance of the submissions to the PETS 2009 and Winter-PETS 2009 were evaluated and included in the results. The evaluation highlights the detection and tracking performance of the authors’ systems in areas such as precision, accuracy and robustness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article explores the problematic nature of the label “home ownership” through a case study of the English model of shared ownership, one of the methods used by the UK government to make home ownership affordable. Adopting a legal and socio-legal analysis, the article considers whether shared ownership is capable of fulfilling the aspirations households have for home ownership. To do so, the article considers the financial and nonfinancial meanings attached to home ownership and suggests that the core expectation lies in ownership of the value. The article demonstrates that the rights and responsibilities of shared owners are different in many respects from those of traditional home owners, including their rights as regards ownership of the value. By examining home ownership through the lens of shared ownership the article draws out lessons of broader significance to housing studies. In particular, it is argued that shared ownership shows the limitations of two dichotomies commonly used in housing discourse: that between private and social housing; and the classification of tenure between owner-occupiers and renters. The article concludes that a much more nuanced way of referring to home ownership is required, and that there is a need for a change of expectations amongst consumers as to what sharing ownership means.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mapping between chains in the Protein Databank and Enzyme Classification numbers is invaluable for research into structure-function relationships. Mapping at the chain level is a non-trivial problem and we present an automatically updated Web-server, which provides this link in a queryable form and as a downloadable XML or flat file.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive set of machine learning and pattern classification techniques trained and tested on KDD dataset failed in detecting most of the user-to-root attacks. This paper aims to provide an approach for mitigating negative aspects of the mentioned dataset, which led to low detection rates. Genetic algorithm is employed to implement rules for detecting various types of attacks. Rules are formed of the features of the dataset identified as the most important ones for each attack type. In this way we introduce high level of generality and thus achieve high detection rates, but also gain high reduction of the system training time. Thenceforth we re-check the decision of the user-to- root rules with the rules that detect other types of attacks. In this way we decrease the false-positive rate. The model was verified on KDD 99, demonstrating higher detection rates than those reported by the state- of-the-art while maintaining low false-positive rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of the crowd image analysis challenge, as part of the PETS 2009 workshop. The evaluation is carried out using a selection of the metrics available in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The evaluation highlights the strengths of the authors’ systems in areas such as precision, accuracy and robustness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a modified algorithm is suggested for developing polynomial neural network (PNN) models. Optimal partial description (PD) modeling is introduced at each layer of the PNN expansion, a task accomplished using the orthogonal least squares (OLS) method. Based on the initial PD models determined by the polynomial order and the number of PD inputs, OLS selects the most significant regressor terms reducing the output error variance. The method produces PNN models exhibiting a high level of accuracy and superior generalization capabilities. Additionally, parsimonious models are obtained comprising a considerably smaller number of parameters compared to the ones generated by means of the conventional PNN algorithm. Three benchmark examples are elaborated, including modeling of the gas furnace process as well as the iris and wine classification problems. Extensive simulation results and comparison with other methods in the literature, demonstrate the effectiveness of the suggested modeling approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the PETS2009 outdoor crowd image analysis surveillance dataset and the performance evaluation of people counting, detection and tracking results using the dataset submitted to five IEEE Performance Evaluation of Tracking and Surveillance (PETS) workshops. The evaluation was carried out using well established metrics developed in the Video Analysis and Content Extraction (VACE) programme and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The comparative evaluation highlights the detection and tracking performance of the authors’ systems in areas such as precision, accuracy and robustness and provides a brief analysis of the metrics themselves to provide further insights into the performance of the authors’ systems.