83 resultados para Sunsynchronous satellites

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate variability in the African Soudano-Sahel savanna zone has attracted much attention because of the persistence of anomalously low rainfall. Past efforts to monitor the climate of this region have focused on rainfall and vegetation conditions, while land surface temperature (LST) has received less attention. Remote sensing of LST is feasible and possible at global scale. Most remotely sensed estimates of LST are based on the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) that are limited in their ability to capture the full diurnal cycle. Although more frequent observations are available from past geostationary satellites, their spatial resolution is coarser than that of polar orbiting satellites. In this study, the improved capabilities of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the METEOSAT Second Generation (MSG) instrument are used to remotely sense the LST in the African Soudano-Sahel savanna zone at a resolution of 3 km and 15 minutes. In support of the Radiative Atmospheric Divergence using the ARM Mobile Facility (AMF), GERB and AMMA Stations (RADAGAST) project, African Monsoon Multidisciplinary Analyses (AMMA) project and the Department of Energy's Atmospheric Radiation Measurement (ARM) program, the ARM Mobile Facility was deployed during 2006 in this climatically sensitive region, thereby providing a unique opportunity to evaluate remotely sensed algorithms for deriving LST.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Soil Moisture and Ocean Salinity (SMOS) satellite marks the commencement of dedicated global surface soil moisture missions, and the first mission to make passive microwave observations at L-band. On-orbit calibration is an essential part of the instrument calibration strategy, but on-board beam-filling targets are not practical for such large apertures. Therefore, areas to serve as vicarious calibration targets need to be identified. Such sites can only be identified through field experiments including both in situ and airborne measurements. For this purpose, two field experiments were performed in central Australia. Three areas are studied as follows: 1) Lake Eyre, a typically dry salt lake; 2) Wirrangula Hill, with sparse vegetation and a dense cover of surface rock; and 3) Simpson Desert, characterized by dry sand dunes. Of those sites, only Wirrangula Hill and the Simpson Desert are found to be potentially suitable targets, as they have a spatial variation in brightness temperatures of <4 K under normal conditions. However, some limitations are observed for the Simpson Desert, where a bias of 15 K in vertical and 20 K in horizontal polarization exists between model predictions and observations, suggesting a lack of understanding of the underlying physics in this environment. Subsequent comparison with model predictions indicates a SMOS bias of 5 K in vertical and 11 K in horizontal polarization, and an unbiased root mean square difference of 10 K in both polarizations for Wirrangula Hill. Most importantly, the SMOS observations show that the brightness temperature evolution is dominated by regular seasonal patterns and that precipitation events have only little impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) has generated sea surface temperature (SST) products from Geostationary Operational Environmental Satellite (GOES)-East (E) and GOES-West (W) on an operational basis since December 2000. Since that time, a process of continual development has produced steady improvements in product accuracy. Recent improvements extended the capability to permit generation of operational SST retrievals from the Japanese Multifunction Transport Satellite (MTSAT)-1R and the European Meteosat Second Generation (MSG) satellite, thereby extending spatial coverage. The four geostationary satellites (at longitudes of 75°W, 135°W, 140°E, and 0°) provide high temporal SST retrievals for most of the tropics and midlatitudes, with the exception of a region between 60° and 80°E. Because of ongoing development, the quality of these retrievals now approaches that of SST products from the polar-orbiting Advanced Very High Resolution Radiometer (AVHRR). These products from GOES provide hourly regional imagery, 3-hourly hemispheric imagery, 24-h merged composites, a GOES SST level 2 preprocessed product every 1/2 h for each hemisphere, and a match-up data file for each product. The MTSAT and the MSG products include hourly, 3-hourly, and 24-h merged composites. These products provide the user community with a reliable source of SST observations, with improved accuracy and increased coverage in important oceanographic, meteorological, and climatic regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An improved algorithm for the generation of gridded window brightness temperatures is presented. The primary data source is the International Satellite Cloud Climatology Project, level B3 data, covering the period from July 1983 to the present. The algorithm rakes window brightness, temperatures from multiple satellites, both geostationary and polar orbiting, which have already been navigated and normalized radiometrically to the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer, and generates 3-hourly global images on a 0.5 degrees by 0.5 degrees latitude-longitude grid. The gridding uses a hierarchical scheme based on spherical kernel estimators. As part of the gridding procedure, the geostationary data are corrected for limb effects using a simple empirical correction to the radiances, from which the corrected temperatures are computed. This is in addition to the application of satellite zenith angle weighting to downweight limb pixels in preference to nearer-nadir pixels. The polar orbiter data are windowed on the target time with temporal weighting to account for the noncontemporaneous nature of the data. Large regions of missing data are interpolated from adjacent processed images using a form of motion compensated interpolation based on the estimation of motion vectors using an hierarchical block matching scheme. Examples are shown of the various stages in the process. Also shown are examples of the usefulness of this type of data in GCM validation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System (GNSS) radio occultation (RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an (climate) observing system simulation experiment over the 25-year period 2001 to 2025, which involves quasi-realistic modeling of the neutral atmosphere and the ionosphere. We carried out two climate simulations with the general circulation model MAECHAM5 (Middle Atmosphere European Centre/Hamburg Model Version 5) of the MPI-M Hamburg, covering the period 2001–2025: One control run with natural variability only and one run also including anthropogenic forcings due to greenhouse gases, sulfate aerosols, and tropospheric ozone. On the basis of this, we perform quasi-realistic simulations of RO observables for a small GNSS receiver constellation (six satellites), state-of-the-art data processing for atmospheric profiles retrieval, and a statistical analysis of temperature trends in both the “observed” climatology and the “true” climatology. Here we describe the setup of the experiment and results from a test bed study conducted to obtain a basic set of realistic estimates of observational errors (instrument- and retrieval processing-related errors) and sampling errors (due to spatial-temporal undersampling). The test bed results, obtained for a typical summer season and compared to the climatic 2001–2025 trends from the MAECHAM5 simulation including anthropogenic forcing, were found encouraging for performing the full 25-year experiment. They indicated that observational and sampling errors (both contributing about 0.2 K) are consistent with recent estimates of these errors from real RO data and that they should be sufficiently small for monitoring expected temperature trends in the global atmosphere over the next 10 to 20 years in most regions of the upper troposphere and lower stratosphere (UTLS). Inspection of the MAECHAM5 trends in different RO-accessible atmospheric parameters (microwave refractivity and pressure/geopotential height in addition to temperature) indicates complementary climate change sensitivity in different regions of the UTLS so that optimized climate monitoring shall combine information from all climatic key variables retrievable from GNSS RO data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stratospheric Sounding Units (SSU) on the NOAA operational satellites have been the main source of near global temperature trend data above the lower stratosphere. They have been used extensively for comparison with model-derived trends. The SSU senses in the 15 micron band of CO2 and hence the weighting function is sensitive to changes in CO2 concentrations. The impact of this change in weighting function has been ignored in all recent trend analyses. We show that the apparent trends in global mean brightness temperature due to the change in weighting function vary from about -0.4 K/decade to 0.4 K/decade depending on the altitude sensed by the different SSU channels. For some channels, this apparent trend is of a similar size to the trend deduced from SSU data but ignoring the change in weighting function. In the mid-stratosphere, the revised trends are now significantly more negative and in better agreement with model-calculated trends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on a new satellite sensor, the Geostationary Earth Radiation Budget (GERB) experiment. GERB is designed to make the first measurements of the Earth's radiation budget from geostationary orbit. Measurements at high absolute accuracy of the reflected sunlight from the Earth, and the thermal radiation emitted by the Earth are made every 15 min, with a spatial resolution at the subsatellite point of 44.6 km (north–south) by 39.3 km (east–west). With knowledge of the incoming solar constant, this gives the primary forcing and response components of the top-of-atmosphere radiation. The first GERB instrument is an instrument of opportunity on Meteosat-8, a new spin-stabilized spacecraft platform also carrying the Spinning Enhanced Visible and Infrared (SEVIRI) sensor, which is currently positioned over the equator at 3.5°W. This overview of the project includes a description of the instrument design and its preflight and in-flight calibration. An evaluation of the instrument performance after its first year in orbit, including comparisons with data from the Clouds and the Earth's Radiant Energy System (CERES) satellite sensors and with output from numerical models, are also presented. After a brief summary of the data processing system and data products, some of the scientific studies that are being undertaken using these early data are described. This marks the beginning of a decade or more of observations from GERB, as subsequent models will fly on each of the four Meteosat Second Generation satellites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research outlined by the Intergovernmental Panel on Climate Change (IPCC) highlights the response of marine boundary layer (MBL) clouds to warming associated with increasing greenhouse gases as a major contributor to uncertainties in model projections of climate change. Understanding how MBL clouds respond to increasing temperatures is hampered by the relative scarcity of marine surface observations and the difficulty of retrieving accurate parameters remotely from satellites. In this study we combine data from surface observations with that from the International Satellite Cloud Climatology Project (ISCCP), CloudSat and CALIPSO, with a view to investigating the spatial distribution and variations in MBL cloud fraction and cloud liquid water path (LWP). These results are then compared with the treatment of MBL clouds in the UK Met Office HadGEM models. Future work will assess how variations in LWP impact the top of atmosphere radiative energy balance using data from the Geostationary Earth Radiation Budget (GERB), in order to quantify the response of MBL clouds on interannual timescales to a changing climate

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eight years of cloud properties retrieved from Television Infrared Observation Satellite-N (TIROS-N) Observational Vertical Sounder (TOVS) observations aboard the NOAA polar orbiting satellites are presented. The relatively high spectral resolution of these instruments in the infrared allows especially reliable cirrus identification day and night. This dataset therefore provides complementary information to the International Satellite Cloud Climatology Project (ISCCP). According to this dataset, cirrus clouds cover about 27% of the earth and 45% of the Tropics, whereas ISCCP reports 19% and 25%, respectively. Both global datasets agree within 5% on the amount of single-layer low clouds, at 30%. From 1987 to 1995, global cloud amounts remained stable to within 2%. The seasonal cycle of cloud amount is in general stronger than its diurnal cycle and it is stronger than the one of effective cloud amount, the latter the relevant variable for radiative transfer. Maximum effective low cloud amount over ocean occurs in winter in SH subtropics in the early morning hours and in NH midlatitudes without diurnal cycle. Over land in winter the maximum is in the early afternoon, accompanied in the midlatitudes by thin cirrus. Over tropical land and in the other regions in summer, the maximum of mesoscale high opaque clouds occurs in the evening. Cirrus also increases during the afternoon and persists during night and early morning. The maximum of thin cirrus is in the early afternoon, then decreases slowly while cirrus and high opaque clouds increase. TOVS extends information of ISCCP during night, indicating that high cloudiness, increasing during the afternoon, persists longer during night in the Tropics and subtropics than in midlatitudes. A comparison of seasonal and diurnal cycle of high cloud amount between South America, Africa, and Indonesia during boreal winter has shown strong similarities between the two land regions, whereas the Indonesian islands show a seasonal and diurnal behavior strongly influenced by the surrounding ocean. Deeper precipitation systems over Africa than over South America do not seem to be directly reflected in the horizontal coverage and mesoscale effective emissivity of high clouds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the “flux excess” effect, whereby open solar flux estimates from spacecraft increase with increasing heliocentric distance. We analyze the kinematic effect on these open solar flux estimates of large-scale longitudinal structure in the solar wind flow, with particular emphasis on correcting estimates made using data from near-Earth satellites. We show that scatter, but no net bias, is introduced by the kinematic “bunching effect” on sampling and that this is true for both compression and rarefaction regions. The observed flux excesses, as a function of heliocentric distance, are shown to be consistent with open solar flux estimates from solar magnetograms made using the potential field source surface method and are well explained by the kinematic effect of solar wind speed variations on the frozen-in heliospheric field. Applying this kinematic correction to the Omni-2 interplanetary data set shows that the open solar flux at solar minimum fell from an annual mean of 3.82 × 1016 Wb in 1987 to close to half that value (1.98 × 1016 Wb) in 2007, making the fall in the minimum value over the last two solar cycles considerably faster than the rise inferred from geomagnetic activity observations over four solar cycles in the first half of the 20th century.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geospace environment is controlled largely by events on the Sun, such as solar flares and coronal mass ejections, which generate significant geomagnetic and upper atmospheric disturbances. The study of this Sun-Earth system, which has become known as space weather, has both intrinsic scientific interest and practical applications. Adverse conditions in space can damage satellites and disrupt communications, navigation, and electric power grids, as well as endanger astronauts. The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the U.S. National Science Foundation (see http://www.bu.edu/cism/), is developing a suite of integrated physics-based computer models that describe the space environment from the Sun to the Earth for use in both research and operations [Hughes and Hudson, 2004, p. 1241]. To further this mission, advanced education and training programs sponsored by CISM encourage students to view space weather as a system that encompasses the Sun, the solar wind, the magnetosphere, and the ionosphere/thermosphere. This holds especially true for participants in the CISM space weather summer school [Simpson, 2004].