184 resultados para Summer Monsoon

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior of the Asian summer monsoon is documented and compared using the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA) and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) Reanalysis. In terms of seasonal mean climatologies the results suggest that, in several respects, the ERA is superior to the NCEP-NCAR Reanalysis. The overall better simulation of the precipitation and hence the diabatic heating field over the monsoon domain in ERA means that the analyzed circulation is probably nearer reality. In terms of interannual variability, inconsistencies in the definition of weak and strong monsoon years based on typical monsoon indices such as All-India Rainfall (AIR) anomalies and the large-scale wind shear based dynamical monsoon index (DMI) still exist. Two dominant modes of interannual variability have been identified that together explain nearly 50% of the variance. Individually, they have many features in common with the composite flow patterns associated with weak and strong monsoons, when defined in terms of regional AIR anomalies and the large-scale DMI. The reanalyses also show a common dominant mode of intraseasonal variability that describes the latitudinal displacement of the tropical convergence zone from its oceanic-to-continental regime and essentially captures the low-frequency active/break cycles of the monsoon. The relationship between interannual and intraseasonal variability has been investigated by considering the probability density function (PDF) of the principal component of the dominant intraseasonal mode. Based on the DMI, there is an indication that in years with a weaker monsoon circulation, the PDF is skewed toward negative values (i,e., break conditions). Similarly, the PDFs for El Nino and La Nina years suggest that El Nino predisposes the system to more break spells, although the sample size may limit the statistical significance of the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various paleoclimate records have shown that the Asian monsoon was punctuated by numerous suborbital time-scale events, and these events were coeval with those that happened in the North Atlantic. This study investigates the Asian summer monsoon responses to the Atlantic Ocean forcing by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the cold North Atlantic and warm South Atlantic induced by the weakened Atlantic thermohaline circulation (THC) due to the freshwater flux lead to significantly suppressed Asian summer monsoon. The authors analyzed the detailed processes of the Atlantic Ocean forcing on the Asian summer monsoon, and found that the atmospheric teleconnection in the eastern and central North Pacific and the atmosphere-ocean interaction in the tropical North Pacific play the most crucial role. Enhanced precipitation in the subtropical North Pacific extends the effects of Atlantic Ocean forcing from the eastern Pacific into the western Pacific, and the atmosphere-ocean interaction in the tropical Pacific and Indian Ocean intensifies the circulation and precipitation anomalies in the Pacific and East Asia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the change of the El Niño–Southern Oscillation (ENSO)-South Asian summer monsoon interaction in response to a weakened Atlantic thermohaline circulation (THC) by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the weakened THC leads to intensified ENSO-South Asian summer monsoon relationship and enhanced South Asian summer monsoon interannual variability. Furthermore, it is suggested that this intensification of the ENSO-monsoon relationship is likely due to the enhanced ENSO variability induced by the weakened THC. This study indicates that the low frequency fluctuation of Atlantic SSTs might have an influence on South Asian summer monsoon interannual variability and the ENSO-monsoon interaction, and suggests a nonlocal mechanism for the observed decadal-multidecadal modulation of ENSO-monsoon relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes to the behaviour of subseasonal precipitation extremes and active-break cycles of the Indian summer monsoon are assessed in this study using pre-industrial and 2 × CO2 integrations of the Hadley Centre coupled model HadCM3, which is able to simulate the monsoon seasonal cycle reasonably. At 2 × CO2, mean summer rainfall increases slightly, especially over central and northern India. The mean intensity of daily precipitation during the monsoon is found to increase, consistent with fewer wet days, and there are increases to heavy rain events beyond changes in the mean alone. The chance of reaching particular thresholds of heavy rainfall is found to approximately double over northern India, increasing the likelihood of damaging floods on a seasonal basis. The local distribution of such projections is uncertain, however, given the large spread in mean monsoon rainfall change and associated extremes amongst even the most recent coupled climate models. The measured increase of the heaviest precipitation events over India is found to be broadly in line with the degree of atmospheric warming and associated increases in specific humidity, lending a degree of predictability to changes in rainfall extremes. Active-break cycles of the Indian summer monsoon, important particularly due to their effect on agricultural output, are shown to be reasonably represented in HadCM3, in particular with some degree of northward propagation. We note an intensification of both active and break events, particularly when measured against the annual cycle, although there is no suggestion of any change to the duration or likelihood of monsoon breaks. Copyright © 2009 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anomalous heavy snow during winter or spring has long been regarded as a possible precursor of deficient Indian monsoon rainfall during the subsequent summer. However previous work in this field is inconclusive, in terms of the mechanism that communicates snow anomalies to the monsoon summer, and even the region from which snow has the most impact. In this study we explore these issues in coupled and atmosphere-only versions of the Hadley Centre model. A 1050-year control integration of the HadCM3 coupled model, which well represents the seasonal cycle of snow cover over the Eurasian continent, is analysed and shows evidence for weakened monsoons being preceded by strong snow forcing (in the absence of ENSO) over either the Himalaya/Tibetan Plateau or north/west Eurasia regions. However, empirical orthogonal function (EOF) analysis of springtime interannual variability in snow depth shows the leading mode to have opposite signs between these two regions, suggesting that competing mechanisms may be possible. To determine the dominant region, ensemble integrations are carried out using HadAM3, the atmospheric component of HadCM3, and a variety of anomalous snow forcing initial conditions obtained from the control integration of the coupled model. Forcings are applied during spring in separate experiments over the Himalaya/Tibetan Plateau and north/west Eurasia regions, in conjunction with climatological SSTs in order to avoid the direct effects of ENSO. With the aid of idealized forcing conditions in sensitivity tests, we demonstrate that forcing from the Himalaya region is dominant in this model via a Blanford-type mechanism involving reduced surface sensible heat and longwave fluxes, reduced heating of the troposphere over the Tibetan Plateau and consequently a reduced meridional tropospheric temperature gradient which weakens the monsoon during early summer. Snow albedo is shown to be key to the mechanism, explaining around 50% of the perturbation in sensible heating over the Tibetan Plateau, and accounting for the majority of cooling through the troposphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the effect of seasonally varying chlorophyll on the climate of the Arabian Sea and South Asian monsoon. The effect of such seasonality on the radiative properties of the upper ocean is often a missing process in coupled general circulation models and its large amplitude in the region makes it a pertinent choice for study to determine any impact on systematic biases in the mean and seasonality of the Arabian Sea. In this study we examine the effects of incorporating a seasonal cycle in chlorophyll due to phytoplankton blooms in the UK Met Office coupled atmosphere-ocean GCM HadCM3. This is achieved by performing experiments in which the optical properties of water in the Arabian Sea - a key signal of the semi-annual cycle of phytoplankton blooms in the region - are calculated from a chlorophyll climatology derived from Sea-viewing Wide Field-of-View Sensor (SeaWiFS) data. The SeaWiFS chlorophyll is prescribed in annual mean and seasonally-varying experiments. In response to the chlorophyll bloom in late spring, biases in mixed layer depth are reduced by up to 50% and the surface is warmed, leading to increases in monsoon rainfall during the onset period. However when the monsoons are fully established in boreal winter and summer and there are strong surface winds and a deep mixed layer, biases in the mixed layer depth are reduced but the surface undergoes cooling. The seasonality of the response of SST to chlorophyll is found to depend on the relative depth of the mixed layer to that of the anomalous penetration depth of solar fluxes. Thus the inclusion of the effects of chlorophyll on radiative properties of the upper ocean acts to reduce biases in mixed layer depth and increase seasonality in SST.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the contemporaneous relationship between the intensity of the Indian Summer Monsoon (ISM) and runoff in the major rivers of the Aral Sea basin (Amudarya, Syrdarya) and some of their subcatchments. To this end, we use All-India rainfall (AIR) data, CRU surface observations of precipitation and temperature, ERA40 atmospheric data, and natural discharge data corrected for human interference. We show that there is a highly significant positive correlation between ISM intensity and Amudarya runoff. This finding cannot be explained by the spill-over of ISM precipitation over the Hindu Kush into the Amudarya basin. Instead, we suggest that the observed co-variability is mediated by tropospheric temperature variations due to fluctuations in the ISM intensity. These variations are known to be due to Rossby-wave propagation in response to condensational heating during monsoon precipitation. We hypothesise that the corresponding anomalies in surface temperatures imply anomalies in meltwater formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study the relationship between the North American monsoon, the Californian sea surface temperature (SST) cold pool, the Rocky Mountains and the North Pacific subtropical anticyclone is investigated using the Hadley Centre's atmospheric climate model, HadAM3. In 1996 Hoskins hypothesized that heating in the North American monsoon might be important for the maintenance of the summertime North Pacific subtropical anticyclone, since the monsoon heating may induce descent to the north-west of the monsoon in the descending eastern flank of the subtropical anticyclone. This descent is further enhanced by radiative cooling and is associated with equatorward surface winds parallel to the western coast of North America. These equatorward winds induce oceanic upwelling of cold water and contribute to the formation of the Californian SST cold pool, which may feed back on the anticyclone by further suppressing convection and inducing descent. More recently, Rodwell and Hoskins also investigated the global summer monsoon–subtropical anticyclone relationship. They examined the role that mountains play in impeding the progress of the low-level mid-latitude westerlies, either deflecting the westerlies northwards where they ascend along the sloping mid-latitude isentropes or deflecting them southwards forcing them to descend along the isentropes. In particular, the introduction of the Rockies into a primitive-equation model adiabatically induces descent in the eastern descending flank of the North Pacific subtropical anticyclone. These hypothesized mechanisms have been investigated using HadAM3, focusing on the possible suppression of convection by the Californian SST cold pool, the response of the North Pacific subtropical anticyclone to the strength of the North American monsoon and the ‘blocking’ of the mid-latitude westerlies by the Rocky Mountains. The role of the Rockies is examined by integrating the model with modified orography for the Rocky Mountains. Changing the height of the Rockies alters the circulation in a way consistent with the mechanism outlined above. Higher Rocky mountains force the westerlies southwards, inducing descent in the eastern flank of the subtropical anticyclone as the air descends along the sloping isentropes. The relationship between the North American monsoon and the North Pacific subtropical anticyclone is investigated by suppressing the monsoon in HadAM3. The suppression of the monsoon is accomplished by increasing the surface albedo over Mexico, which induces anomalous ascent on the eastward flank of the subtropical anticyclone and anomalous polewards surface winds along the western coast of the North American continent, also providing support for the above hypothesis. The removal of the Californian SST cold pool, however, has a statistically insignificant effect on the model, suggesting that in this model the feedback of the SST cold pool on the eastern flank of the anticyclone is weak.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vagaries of South Asian summer monsoon rainfall on short and long timescales impact the lives of more than one billion people. Understanding how the monsoon will change in the face of global warming is a challenge for climate science, not least because our state-of-the-art general circulation models still have difficulty simulating the regional distribution of monsoon rainfall. However, we are beginning to understand more about processes driving the monsoon, its seasonal cycle and modes of variability. This gives us the hope that we can build better models and ultimately reduce the uncertainty in our projections of future monsoon rainfall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading months was performed by using one-, four-, and seven-month lead retrospective forecasts (hindcasts) of four coupled models from Ensembles-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) for the period of 1960-2005. It is found that the WNP summer anomalies, including lower-tropospheric circulation and precipitation anomalies, can be well predicted for all these leading months. The accuracy of the four-month lead prediction is only slightly weaker than that of the one-month lead prediction, although the skill decreases with the increase of leading months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postglacial expansion of deciduous oak woodlands of the Zagros—Anti-Taurus Mountains, a major biome of the Near East, was delayed until the middle Holocene at ~6300 cal. yr BP. The current hypotheses explain this delay as a consequence of a regional aridity during the early Holocene, slow migration rates of forest trees, and/or a long history of land use and agro-pastoralism in this region. In the present paper, support is given to a hypothesis that suggests different precipitation seasonalities during the early Holocene compared with the late Holocene. The oak species of the Zagros—Anti-Taurus Mts, particularly Quercus brantii Lindl., are strongly dependent on spring precipitation for regeneration and are sensitive to a long dry season. Detailed analysis of modern atmospheric circulation patterns in SW Asia during the late spring suggests that the Indian Summer Monsoon (ISM) intensification can modify the amount of late spring and/or early summer rainfall in western/northwestern Iran and eastern Anatolia, which could in turn have controlled the development of the Zagros—Anti-Taurus deciduous oak woodlands. During the early Holocene, the northwestward shift of the Inter-Tropical Convergence Zone (ITCZ) could have displaced the subtropical anticyclonic belt or associated high pressure ridges to the northwest. The latter could, in turn, have prevented the southeastward penetration of low pressure systems originating from the North Atlantic and Black Sea regions. Such atmospheric configuration could have reduced or eliminated the spring precipitation creating a typical Mediterranean continental climate characterized by winter-dominated precipitation. This scenario highlights the complexity of biome response to climate system interactions in transitional climatic and biogeographical regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many climate models have problems simulating Indian summer monsoon rainfall and its variability, resulting in considerable uncertainty in future projections. Problems may relate to many factors, such as local effects of the formulation of physical parametrisation schemes, while common model biases that develop elsewhere within the climate system may also be important. Here we examine the extent and impact of cold sea surface temperature (SST) biases developing in the northern Arabian Sea in the CMIP5 multi-model ensemble, where such SST biases are shown to be common. Such biases have previously been shown to reduce monsoon rainfall in the Met Office Unified Model (MetUM) by weakening moisture fluxes incident upon India. The Arabian Sea SST biases in CMIP5 models consistently develop in winter, via strengthening of the winter monsoon circulation, and persist into spring and summer. A clear relationship exists between Arabian Sea cold SST bias and weak monsoon rainfall in CMIP5 models, similar to effects in the MetUM. Part of this effect may also relate to other factors, such as forcing of the early monsoon by spring-time excessive equatorial precipitation. Atmosphere-only future time-slice experiments show that Arabian Sea cold SST biases have potential to weaken future monsoon rainfall increases by limiting moisture flux acceleration through non-linearity of the Clausius-Clapeyron relationship. Analysis of CMIP5 model future scenario simulations suggests that, while such effects are likely small compared to other sources of uncertainty, models with large Arabian Sea cold SST biases suppress the range of potential outcomes for changes to future early monsoon rainfall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The boreal summer Asian monsoon has been evaluated in 25 Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late 20th Century. Diagnostics and skill metrics have been calculated to assess the time-mean, climatological annual cycle, interannual variability, and intraseasonal variability. Progress has been made in modeling these aspects of the monsoon, though there is no single model that best represents all of these aspects of the monsoon. The CMIP5 multi-model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms of the skill of simulating pattern correlations with respect to observations. Additionally, for rainfall/convection the MMM outperforms the individual models for the time mean, the interannual variability of the East Asian monsoon, and intraseasonal variability. The pattern correlation of the time (pentad) of monsoon peak and withdrawal is better simulated than that of monsoon onset. The onset of the monsoon over India is typically too late in the models. The extension of the monsoon over eastern China, Korea, and Japan is underestimated, while it is overestimated over the subtropical western/central Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Niño-3.4 sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall teleconnection, the MMM interannual rainfall anomalies are weak compared to observations. Though simulation of intraseasonal variability remains problematic, several models show improved skill at representing the northward propagation of convection and the development of the tilted band of convection that extends from India to the equatorial west Pacific. The MMM also well represents the space-time evolution of intraseasonal outgoing longwave radiation anomalies. Caution is necessary when using GPCP and CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences over ocean and land between these two data sets, and (2) the timing of monsoon withdrawal over India, where the smooth southward progression seen in India Meteorological Department data is better realized in CMAP data compared to GPCP data.