14 resultados para Succinate
em CentAUR: Central Archive University of Reading - UK
Resumo:
The GABase assay is widely used to rapidly and accurately quantify levels of extracellular γ-aminobutyric acid (GABA). Here we demonstrate a modification of this assay that enables quantification of intracellular GABA in bacterial cells. Cells are lysed by boiling and ethanolamine-O-sulphate, a GABA transaminase inhibitor is used to distinguish between GABA and succinate semialdehyde.
Resumo:
Listeria monocytogenes, the causative agent of human listeriosis, is known for its ability to withstand severe environmental stresses. The glutamate decarboxylase (GAD) system is one of the principal systems utilized by the bacterium to cope with acid stress, a reaction that produces γ-aminobutyrate (GABA) from glutamate. Recently, we have shown that GABA can accumulate intracellularly under acidic conditions, even under conditions where no extracellular glutamate-GABA exchange is detectable. The GABA shunt, a pathway that metabolizes GABA to succinate, has been described for several other bacterial genera, and the present study sought to determine whether L. monocytogenes has this metabolic capacity, which, if present, could provide a possible route for succinate biosynthesis in L. monocytogenes. Using crude protein extracts from L. monocytogenes EGD-e, we show that this strain exhibits activity for the two main enzyme reactions in the GABA shunt, GABA aminotransferase (GABA-AT) and succinic semialdehyde dehydrogenase (SSDH). Two genes were identified as candidates for encoding these enzyme activities, argD (GABA-AT) and lmo0913 (SSDH). Crude protein extracts prepared from a mutant lacking a functional argD gene significantly reduced GABA-AT activity, while an lmo0913 mutant lost all detectable SSDH activity. The deletion of lmo0913 increased the acid tolerance of EGD-e and showed an increased accumulation of intracellular GABA, suggesting that this pathway plays a significant role in the survival of this pathogen under acidic conditions. This is the first report of such a pathway in the genus Listeria, which highlights an important link between metabolism and acid tolerance and also presents a possible compensatory pathway to partially overcome the incomplete tricarboxylic acid cycle of Listeria.
Resumo:
Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.
Resumo:
Spontaneous mutants of Rhizobium leguminosarum bv. viciae 3841 were isolated that grow faster than the wild type on gamma-aminobutyric acid (GABA) as the sole carbon and nitrogen source. These strains (RU1736 and RU1816) have frameshift mutations (gtsR101 and gtsR102, respectively) in a GntR-type regulator (GtsR) that result in a high rate of constitutive GABA transport. Tn5 mutagenesis and quantitative reverse transcription-PCR showed that GstR regulates expression of a large operon (pRL100242 to pRL100252) on the Sym plasmid that is required for GABA uptake. An ABC transport system, GtsABCD (for GABA transport system) (pRL100248-51), of the spermidine/putrescine family is part of this operon. GtsA is a periplasmic binding protein, GtsB and GtsC are integral membrane proteins, and GtsD is an ATP-binding subunit. Expression of gtsABCD from a lacZ promoter confirmed that it alone is responsible for high rates of GABA transport, enabling rapid growth of strain 3841 on GABA. Gts transports open-chain compounds with four or five carbon atoms with carboxyl and amino groups at, or close to, opposite termini. However, aromatic compounds with similar spacing between carboxyl and amino groups are excellent inhibitors of GABA uptake so they may also be transported. In addition to the ABC transporter, the operon contains two putative mono-oxygenases, a putative hydrolase, a putative aldehyde dehydrogenase, and a succinate semialdehyde dehydrogenase. This suggests the operon may be involved in the transport and breakdown of a more complex precursor to GABA. Gts is not expressed in pea bacteroids, and gtsB mutants are unaltered in their symbiotic phenotype, suggesting that Bra is the only GABA transport system available for amino acid cycling.
Resumo:
The DcuS-DcuR system of Escherichia coli is a two-component sensor-regulator that controls gene expression in response to external C-4-dicarboxylates and citrate. The DcuS protein is particularly interesting since it contains two PAS domains, namely a periplasmic C-4-dicarboxylate-sensing PAS domain (PASp) and a cytosolic PAS domain (PASc) of uncertain function. For a study of the role of the PASc domain, three different fragments of DcuS were overproduced and examined: they were PASc-kinase, PASc, and kinase. The two kinase-domain-containing fragments were autophosphorylated by [gamma-P-32]ATP. The rate was not affected by fumarate or succinate, supporting the role of the PASp domain in C-4-dicarboxylate sensing. Both of the phosphorylated DcuS constructs were able to rapidly pass their phosphoryl groups to DcuR, and after phosphorylation, DcuR dephosphorylated rapidly. No prosthetic group or significant quantity of metal was found associated with either of the PASc-containing proteins. The DNA-binding specificity of DcuR was studied by use of the pure protein. It was found to be converted from a monomer to a dimer upon acetylphosphate treatment, and native polyacrylamide gel electrophoresis suggested that it can oligomerize. DcuR specifically bound to the promoters of the three known DcuSR-regulated genes (dctA, dcuB, and frdA), with apparent K(D)s of 6 to 32 muM for untreated DcuR and less than or equal to1 to 2 muM for the acetylphosphate-treated form. The binding sites were located by DNase I footprinting, allowing a putative DcuR-binding motif [tandemly repeated (T/A)(A/T)(T/C)(A/T)AA sequences] to be identified. The DcuR-binding sites of the dcuB, dctA, and frdA genes were located 27, 94, and 86 bp, respectively, upstream of the corresponding +1 sites, and a new promoter was identified for dcuB that responds to DcuR.
Resumo:
Alanine dehydrogenase (AldA) is the principal enzyme with which pea bacteroids synthesize alanine de novo. In free-living culture, AMA activity is induced by carboxylic acids (succinate, malate, and pyruvate), although the best inducer is alanine. Measurement of the intracellular concentration of alanine showed that AldA contributes to net alanine synthesis in laboratory cultures. Divergently transcribed from aldA is an AsnC type regulator, aldR. Mutation of aldR prevents induction of AldA activity. Plasmid-borne gusA fusions showed that aldR is required for transcription of both aldA and aldR; hence, AldR is autoregulatory. However, plasmid fusions containing the aldA-aldR intergenic region could apparently titrate out AldR, sometimes resulting in a complete loss of AldA enzyme activity. Therefore, integrated aldR::gusA and aldA::gusA fusions, as well as Northern blotting, were used to confirm the induction of aldA activity. Both aldA and aldR were expressed in the II/III interzone and zone III of pea nodules. Overexpression of aldA in bacteroids did not alter the ability of pea plants to fix nitrogen, as measured by acetylene reduction, but caused a large reduction in the size and dry weight of plants. This suggests that overexpression of aldA impairs the ability of bacteroids to donate fixed nitrogen that the plant can productively assimilate. We propose that the role of AldA may be to balance the alanine level for optimal functioning of bacteroid metabolism rather than to synthesize alanine as the sole product of N-2 reduction.
Resumo:
The tetraprotonated form of the dioxatetraazamacrocycle, 6,19-dioxa-3,9,16,22-tetraaza[22.2.2.2(11,14)]-triaconta-1(26),11,13,24, 27,29-hexaene, (H4L1)(4+), was used as the receptor for binding studies with carboxylate anionic substrates of different shapes, sizes, and charges [succinate (suc(2-)), cyclo- hexanetricarboxylate (cta(3-)), phthalate (ph(2-)), isophthalate (iph(2-)), terephthalate (tph(2-)), and benezenetricarboxylate (btc(3-))]. Association constants were determined by potentiometry in aqueous solution at 298.2 K and 0.10 M KCl and by H-1 NMR titration in D2O. The strongest association was found for the btc3- anion at 5-7 pH region. From both techniques it was possible to establish the binding preference trend of the receptor for the different substrates, and the H-1 NMR spectroscopy gave important suggestions about the type of interactions between partners and the location of the substrates in the supramolecular entities formed. The effective binding constants at pH 6 follow the order: btc(3-)>iph(2-)>cta(3-) =ph(2-)>tph(2-)>suc(2-). All the studies suggest that the anionic substrates bind to the receptor via N-H center dot center dot center dot O = C hydrogen bonds and electrostatic interactions, and the aromatic substrates can also establish pi-pi stacking interactions. The crystal structures of (H4L1)(4+) and its supramolecular assemblies with ph(2-) and tph(2-) were determined by X-ray diffraction. The last two structures showed that the association process in solid state occurs via multiple N-H center dot center dot center dot O = C hydrogen bonds with the anionic substrate located outside the macrocyclic cavity of the receptor. Molecular dynamics simulations carried out for the association of (H4L1)(4+) with tph(2-) and btC(3-) in water solution established at atomic level the existence of all interactions suggested by the experimental studies, which act cooperatively in the binding process. Furthermore, the binding free energies were estimated and the values are in agreement with the experimental ones, indicating that the binding of these two anionic substrates occurs into the receptor cavity. However, the tph(2-) has also propensity to leave the macrocyclic cavity and its molecular recognition can also happen at the top of the receptor. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The new dioxatetraazamacrocycle (L-1) was synthesized by a 2 + 2 condensation and characterized. Stability constants of its copper(II) complexes were determined by spectrophotometry in DMSO at 298.2 K in 0. 10 mol dm(-3) KClO4. Mainly dinuclear complexes are formed and the presence of mononuclear species is dependent on the counterion (Cl- or ClO4-). The association constants of the dinuclear copper(II) complexes with dicarboxylate anions [oxalate (oxa(2-)), malonate (mal(2-)), succinate (suc(2-)), and glutarate (glu(2-))] were also determined by spectrophotometry at 298.2 K in DMSO, and it was found that values decrease with an increase of the alkyl chain between the carboxylate groups. X-Band EPR spectra of the dicopper(II) complexes and of their cascade species in frozen DMSO exhibit dipole-dipole coupling, and their simulation, together with their UV-vis spectra, showed that the copper centres of the complexes in solution had square pyramidal geometries though with different distortions. From the experimental data, it was also possible to predict the Cu...Cu distances, the minimum being found at 6.4 angstrom for the (Cu2LCl4)-Cl-1 complex and then successively this distance slightly increases when the chloride anions are replaced by dicarboxylate anions, from 6.6 angstrom for oxa(2-) to 7.8 for glu(2-). The crystal structures of the dinuclear copper cascade species with oxa(2-) and suc(2-) were determined and showed one anion bridging both copper centres and Cu...Cu distances of 5.485(7) angstrom and 6.442(8) angstrom, respectively.
Resumo:
The dibenzodioxatetraazamacrocycle [26]pbz(2)N(4)O(2) was characterised by single crystal X-ray diffraction and the protonation constants of this compound and the stability constants of its copper(II) and lead(II) complexes were determined by potentiometry in water at 298.2 K in 0.10 mol dm(-3) in KNO3. Mono- and dinuclear complexes were found for both metal ions, the dinuclear complexes being the main species in the 5-7.5 pH range for copper(II) and 7.5-8.5 for lead(II). As expected the values of the stability constants for the copper(II) complexes are lower than those for related macrocycles containing only nitrogen atoms. The presence of mono- and dinuclear copper complexes was also confirmed by electrospray ionization mass spectrometry. These results suggest that the symmetric macrocyclic cavity of [26]pbZ(2)N(4)O(2) has enough space for the coordination of two metal ions. Additionally, NMR spectroscopy showed that the dinuclear complex of lead(II) has high symmetry. The equilibrium constants of the dinuclear copper(II) complexes and dicarboxylate anions (oxalate, malonate and succinate) were also determined in 0.10 mol dm-3 aqueous KNO3 solution. Only species containing one anion, Cu(2)H(h)LA((2+h)), were found, strongly suggesting that the anion bridges the two copper(II) ions. The binding constants of the cascade species formed by [Cu-2[26]pbZ(2)N(4)O(2)(H2O)(4+) with dicarboxylate anions decrease with the increase in length of the alkyl chain of the anion, a fact which was attributed to a higher conformational energy necessary for the rearrangement of the macrocycle to accommodate the larger anions bridging the two copper(II) centres. The variation of the magnetic susceptibility with temperature Of [Cu-2(H-2[26]pbz(2)N(4)O(2))(oxa)(3)]-4H(2)O and [Cu-2([26]pbz(2)N(4)O(2))(suc)Cl-2] were measured and the two complexes showed different behaviour. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The extent to which lactoperoxidase (LP) activity was affected while varying the concentration of various compounds normally present in the reaction medium was investigated. LP activity increased with increasing concentrations of 2,2'-azino-bis-3-ethylbenz-thiazoline-6-sulphonic acid (ABTS) but decreased with increasing thiocyanate concentrations. Maximum activity was at 0.1 mm for peroxide. Activity increased in the presence of lactose, whey protein concentrate, sodium, magnesium and calcium chlorides, but decreased in the presence of casein. Activity was similar in either acetate or phosphate buffers but higher in either citrate or succinate buffers. These compounds influence LP activity and should be considered when optimum activity conditions are being established.
Resumo:
Glutamate plays a central role in a wide range of metabolic processes in bacterial cells. This review focuses on the involvement of glutamate in bacterial stress responses. In particular it reviews the role of glutamate metabolism in response against acid stress and other stresses. The glutamate decarboxylase (GAD) system has been implicated in acid tolerance in several bacterial genera. This system facilitates intracellular pH homeostasis by consuming protons in a decarboxylation reaction that produces γ-aminobutyrate (GABA) from glutamate. An antiporter system is usually present to couple the uptake of glutamate to the efflux of GABA. Recent insights into the functioning of this system will be discussed. Finally the intracellular fate of GABA will also be discussed. Many bacteria are capable of metabolising GABA to succinate via the GABA shunt pathway. The role and regulation of this pathway will be addressed in the review. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Resumo:
We investigated the short-term (7 days) and long-term (60 days) metabolic effect of high fat diet induced obesity (DIO) and weight gain in isogenic C57BL/6 mice and examined the specific metabolic differentiation between mice that were either strong-responders (SR), or non-responders (NR) to weight gain. Mice (n = 80) were fed a standard chow diet for 7 days prior to randomization into a high-fat (HF) (n = 56) or a low-fat (LF) (n = 24) diet group. The (1)H NMR urinary metabolic profiles of LF and HF mice were recorded 7 and 60 days after the diet switch. On the basis of the body weight gain (BWG) distribution of HF group, we identified NR mice (n = 10) and SR mice (n = 14) to DIO. Compared with LF, HF feeding increased urinary excretion of glycine conjugates of β-oxidation intermediate (hexanoylglycine), branched chain amino acid (BCAA) catabolism intermediates (isovalerylglycine, α-keto-β-methylvalerate and α-ketoisovalerate) and end-products of nicotinamide adenine dinucleotide (NAD) metabolism (N1-methyl-2-pyridone-5-carboxamide, N1-methyl-4-pyridone-3-carboxamide) suggesting up-regulation of mitochondrial oxidative pathways. In the HF group, NR mice excreted relatively more hexanoylglycine, isovalerylglycine, and fewer tricarboxylic acid (TCA) cycle intermediate (succinate) in comparison to SR mice. Thus, subtle regulation of ketogenic pathways in DIO may alleviate the saturation of the TCA cycle and mitochondrial oxidative metabolism.
Resumo:
Azoles and Succinate Dehydrogenase Inhibitors (SDHIs) are the main fungicides available for septoria tritici blotch control, causal agent Zymoseptoria tritici. Decline in azole sensitivity, in combination with European legislation, poses a threat to wheat production in Ireland. Azole fungicides select CYP51 mutations differentially; it was hypothesised that using combinations of azoles could be an effective anti-resistance tool. Naturally inoculated field experiments were carried out in order to understand the impacts of using combinations of azoles, epoxiconazole and metconazole, on azole sensitivity. Approximately 3700 isolates were isolated and their sensitivity to both azoles analysed. Findings showed that limiting the number of applications, by alternating each fungicide, slowed selection for reduced azole sensitivity. Limiting azole use by reducing doses did not reduce selection for decreased azole sensitivity. Although not complete, cross-resistance was observed between the two azoles, which will lead to general reduction in azole sensitivity. A sub-selection of isolates from each treatment at each location were analysed for changes in the CYP51 gene. Sequence analysis identified 49 combinations of mutations in the CYP51 gene, and three different inserts in the CYP51 promoter. Intragenic recombination also featured in these populations. Baseline studies of five new SDHIs were carried out on 209 naturally infected, non-SDHI-treated isolates. With the exception of fluopyram, cross-resistance was apparent between the SDHIs. Analysis of 2300 isolates found that when compared to the solo products, mixing the SDHI isopyrazam and the azole epoxiconazole increased epoxiconazole sensitivity, but had no apparent effect on isopyrazam sensitivity. SDHI resistance-conferring mutations were absent in the baseline and experimental isolates. As long as azoles are used, Z. tritici populations will continue to evolve towards resistance. Combining different modes-of-action, SDHIs and multi-sites, with azoles will relieve some of that selective pressure. To get the best out of available fungicides, they should be used in combination with host resistance and good crop management practices.
Resumo:
BACKGROUND: Succinate dehydrogenase inhibitor fungicides are important in the management of Zymoseptoria tritici in wheat. New active ingredients from this group of fungicides have been introduced recently and are widely used. Because the fungicides act at a single enzyme site, resistance development in Z. tritici is classified as medium-to-high risk. RESULTS: Isolates from Irish experimental plots in 2015 were tested against the SDHI penthiopyrad during routine monitoring. The median of the population was approximately 2 x less sensitive than the median of the baseline population. Two of the 93 isolates were much less sensitive to penthiopyrad than least sensitive of the baseline isolates. These isolates were also insensitive to most of commercially available SDHIs. Analysis of the succinate dehydrogenase coding genes confirmed the presence of the substitutions SdhC-H152R and SdhD-R47W in the very insensitive isolates. CONCLUSION: This is the first report showing that the SdhC-H152R mutation detected in laboratory mutagenesis studies also exists in the field. The function and relevance of this mutation, combined with SdhD-R47W, still needs to be determined.