8 resultados para Sublimation

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several previous studies have attempted to assess the sublimation depth-scales of ice particles from clouds into clear air. Upon examining the sublimation depth-scales in the Met Office Unified Model (MetUM), it was found that the MetUM has evaporation depth-scales 2–3 times larger than radar observations. Similar results can be seen in the European Centre for Medium-Range Weather Forecasts (ECMWF), Regional Atmospheric Climate Model (RACMO) and Météo-France models. In this study, we use radar simulation (converting model variables into radar observations) and one-dimensional explicit microphysics numerical modelling to test and diagnose the cause of the deep sublimation depth-scales in the forecast model. The MetUM data and parametrization scheme are used to predict terminal velocity, which can be compared with the observed Doppler velocity. This can then be used to test the hypothesis as to why the sublimation depth-scale is too large within the MetUM. Turbulence could lead to dry air entrainment and higher evaporation rates; particle density may be wrong, particle capacitance may be too high and lead to incorrect evaporation rates or the humidity within the sublimating layer may be incorrectly represented. We show that the most likely cause of deep sublimation zones is an incorrect representation of model humidity in the layer. This is tested further by using a one-dimensional explicit microphysics model, which tests the sensitivity of ice sublimation to key atmospheric variables and is capable of including sonde and radar measurements to simulate real cases. Results suggest that the MetUM grid resolution at ice cloud altitudes is not sufficient enough to maintain the sharp drop in humidity that is observed in the sublimation zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulations of precipitating convection are used to illustrate the importance of the turbulent kinetic energy (TKE) budget in determining the virtual potential-temperature structure of the convecting atmosphere. Two sets of simulations are presented: in one the surface temperature was increased to simulate cold air flowing over a warmer surface and in the second a cooling profile, representing cold-air advection, was imposed. It is shown that the terms in the TKE budgets for both sets of simulations scale in the same way, but that the non-dimensional profiles are different. It is suggested that this is associated with the effects of sublimation of ice. It is shown that the magnitudes of the transport and precipitation terms in the virtual potential temperature budget are determined by the scaling of the TKE budget. Some implications of these results for parametrizations of moist convection are discussed. Copyright © 2007 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T /U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Models of snow processes in areas of possible large-scale change need to be site independent and physically based. Here, the accumulation and ablation of the seasonal snow cover beneath a fir canopy has been simulated with a new physically based snow-soil vegetation-atmosphere transfer scheme (Snow-SVAT) called SNOWCAN. The model was formulated by coupling a canopy optical and thermal radiation model to a physically based multilayer snow model. Simple representations of other forest effects were included. These include the reduction of wind speed and hence turbulent transfer beneath the canopy, sublimation of intercepted snow, and deposition of debris on the surface. This paper tests this new modeling approach fully at a fir site within Reynolds Creek Experimental Watershed, Idaho. Model parameters were determined at an open site and subsequently applied to the fir site. SNOWCAN was evaluated using measurements of snow depth, subcanopy solar and thermal radiation, and snowpack profiles of temperature, density, and grain size. Simulations showed good agreement with observations (e.g., fir site snow depth was estimated over the season with r(2) = 0.96), generally to within measurement error. However, the simulated temperature profiles were less accurate after a melt-freeze event, when the temperature discrepancy resulted from underestimation of the rate of liquid water flow and/or the rate of refreeze. This indicates both that the general modeling approach is applicable and that a still more complete representation of liquid water in the snowpack will be important.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evaporation (sublimation) of ice particles beneath frontal ice cloud can provide a significant source of diabatic cooling which can lead to enhanced slantwise descent below the frontal surface. The strength and vertical extent of the cooling play a role in determining the dynamic response of the atmosphere, and an adequate representation is required in numerical weather-prediction (NWP) models for accurate forecasts of frontal dynamics. In this paper, data from a vertically pointing 94 GHz radar are used to determine the characteristic depth-scale of ice particle sublimation beneath frontal ice cloud. A statistical comparison is made with equivalent data extracted from the NWP mesoscale model operational at the Met Office, defining the evaporation depth-scale as the distance for the ice water content to fall to 10% of its peak value in the cloud. The results show that the depth of the ice evaporation zone derived from observations is less than 1 km for 90% of the time. The model significantly overestimates the sublimation depth-scales by a factor of between two and three, and underestimates the local ice water content by a factor of between two and four. Consequently the results suggest the model significantly underestimates the strength of the evaporative cooling, with implications for the prediction of frontal dynamics. A number of reasons for the model discrepancy are suggested. A comparison with radiosonde relative humidity data suggests part of the overestimation in evaporation depth may be due to a high RH bias in the dry slot beneath the frontal cloud, but other possible reasons include poor vertical resolution and deficiencies in the evaporation rate or ice particle fall-speed parametrizations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel analytical model for mixed-phase, unblocked and unseeded orographic precipitation with embedded convection is developed and evaluated. The model takes an idealised background flow and terrain geometry, and calculates the area-averaged precipitation rate and other microphysical quantities. The results provide insight into key physical processes, including cloud condensation, vapour deposition, evaporation, sublimation, as well as precipitation formation and sedimentation (fallout). To account for embedded convection in nominally stratiform clouds, diagnostics for purely convective and purely stratiform clouds are calculated independently and combined using weighting functions based on relevant dynamical and microphysical time scales. An in-depth description of the model is presented, as well as a quantitative assessment of its performance against idealised, convection-permitting numerical simulations with a sophisticated microphysics parameterisation. The model is found to accurately reproduce the simulation diagnostics over most of the parameter space considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The passage of an electric current through graphite or few-layer graphene can result in a striking structural transformation, but there is disagreement about the precise nature of this process. Some workers have interpreted the phenomenon in terms of the sublimation and edge reconstruction of essentially flat graphitic structures. An alternative explanation is that the transformation actually involves a change from a flat to a three-dimensional structure. Here we describe detailed studies of carbon produced by the passage of a current through graphite which provide strong evidence that the transformed carbon is indeed three-dimensional. The evidence comes primarily from images obtained in the scanning transmission electron microscope using the technique of high-angle annular dark-field imaging, and from a detailed analysis of electron energy loss spectra. We discuss the possible mechanism of the transformation, and consider potential applications of “three-dimensional bilayer graphene”.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transport of pollution and heatout of streets into the boundary layer above is not currently understood and so fluxes cannot be quantified. Scalar concentration within the street is determined by the flux out of it and so quantifying fluxes for turbulent flow over a rough urban surface is essential. We have developed a naphthalene sublimation technique to measure transfer from a two-dimensional street canyon in a wind tunnel for the case of flow perpendicular to the street. The street was coated with naphthalene, which sublimes at room temperature, so that the vapour represented the scalar source. The transfer velocity wT relates the flux out of the canyon to the concentration within it and is shown to be linearly related to windspeed above the street. The dimensionless transfer coefficient wT/Uδ represents the ventilation efficiency of the canyon (here, wT is a transfer velocity,Uδ is the wind speed at the boundary-layer top). Observed values are between 1.5 and 2.7 ×10-3 and, for the case where H/W→0 (ratio of buildingheight to street width), values are in the same range as estimates of transfer from a flat plate, giving confidence that the technique yields accurate values for street canyon scalar transfer. wT/Uδ varies with aspect ratio (H/W), reaching a maximum in the wake interference regime (0.3 < H/W < 0.65). However, when upstream roughness is increased, the maximum in wT/Uδ reduces, suggesting that street ventilation is less sensitive to H/W when the flow is in equilibrium with the urban surface. The results suggest that using naphthalene sublimation with wind-tunnel models of urban surfaces can provide a direct measure of area-averaged scalar fluxes.