30 resultados para Sub-tropical Design
em CentAUR: Central Archive University of Reading - UK
Resumo:
The objective of this work was to evaluate the feasibility of simulating maize yield in a sub‑tropical region of southern Brazil using the general large area model (Glam). A 16‑year time series of daily weather data were used. The model was adjusted and tested as an alternative for simulating maize yield at small and large spatial scales. Simulated and observed grain yields were highly correlated (r above 0.8; p<0.01) at large scales (greater than 100,000 km2), with variable and mostly lower correlations (r from 0.65 to 0.87; p<0.1) at small spatial scales (lower than 10,000 km2). Large area models can contribute to monitoring or forecasting regional patterns of variability in maize production in the region, providing a basis for agricultural decision making, and Glam‑Maize is one of the alternatives.
Resumo:
A new tropopause definition involving a flow-dependent blending of the traditional thermal tropopause with one based on potential vorticity has been developed and applied to the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses (ERA), ERA-40 and ERA-Interim. Global and regional trends in tropopause characteristics for annual and solsticial seasonal means are presented here, with emphasis on significant results for the newer ERA-Interim data for 1989-2007. The global-mean tropopause is rising at a rate of 47 m decade−1 , with pressure falling at 1.0 hPa decade−1 , and temperature falling at 0.18 K decade−1 . The Antarctic tropopause shows decreasing heights,warming,and increasing westerly winds. The Arctic tropopause also shows a warming, but with decreasing westerly winds. In the tropics the trends are small, but at the latitudes of the sub-tropical jets they are almost double the global values. It is found that these changes are mainly concentrated in the eastern hemisphere. Previous and new metrics for the rate of broadening of the tropics, based on both height and wind, give trends in the range 0.9◦ decade−1 to 2.2◦ decade−1 . For ERA-40 the global height and pressure trends for the period 1979-2001 are similar: 39 m decade−1 and -0.8 hPa decade−1. These values are smaller than those found from the thermal tropopause definition with this data set, as was used in most previous studies.
Resumo:
Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region and the African and Indian monsoon regions.
Resumo:
A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in US landfalling systems. Here we present a tentative study, which examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1° to 0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and sub-tropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity and power dissipation index in each cluster are documented for both configurations. Our results show that except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. We also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, we examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.
Resumo:
A recent study conducted by Blocken et al. (Numerical study on the existence of the Venturi effect in passages between perpendicular buildings. Journal of Engineering Mechanics, 2008,134: 1021-1028) challenged the popular view of the existence of the ‘Venturi effect’ in building passages as the wind is exposed to an open boundary. The present research extends the work of Blocken et al. (2008a) into a more general setup with the building orientation varying from 0° to 180° using CFD simulations. Our results reveal that the passage flow is mainly determined by the combination of corner streams. It is also shown that converging passages have a higher wind-blocking effect compared to diverging passages, explained by a lower wind speed and higher drag coefficient. Fluxes on the top plane of the passage volume reverse from outflow to inflow in the cases of α=135°, 150° and 165°. A simple mathematical expression to explain the relationship between the flux ratio and the geometric parameters has been developed to aid wind design in an urban neighborhood. In addition, a converging passage with α=15° is recommended for urban wind design in cold and temperate climates since the passage flow changes smoothly and a relatively lower wind speed is expected compared with that where there are no buildings. While for the high-density urban area in (sub)tropical climates such as Hong Kong where there is a desire for more wind, a diverging passage with α=150° is a better choice to promote ventilation at the pedestrian level.
Resumo:
We use a simplified atmospheric general circulation model (AGCM) to investigate the response of the lower atmosphere to thermal perturbations in the lower stratosphere. The results show that generic heating of the lower stratosphere tends to weaken the sub-tropical jets and the tropospheric mean meridional circulations. The positions of the jets, and the extent of the Hadley cells, respond to the distribution of the stratospheric heating, with low latitude heating displacing them poleward, and uniform heating displacing them equatorward. The patterns of response to the low latitude heating are similar to those found to be associated with solar variability in previous observational data analysis, and to the effects of varying solar UV radiation in sophisticated AGCMs. In order to investigate the chain of causality involved in converting the stratospheric thermal forcing to a tropospheric climate signal we conduct an experiment which uses an ensemble of model spin-ups to analyse the time development of the response to an applied stratospheric perturbation. We find that the initial effect of the change in static stability at the tropopause is to reduce the eddy momentum flux convergence in this region. This is followed by a vertical transfer of the momentum forcing anomaly by an anomalous mean circulation to the surface, where it is partly balanced by surface stress anomalies. The unbalanced part drives the evolution of the vertically integrated zonal flow. We conclude that solar heating of the stratosphere may produce changes in the circulation of the troposphere even without any direct forcing below the tropopause. We suggest that the impact of the stratospheric changes on wave propagation is key to the mechanisms involved.
Resumo:
Chemical and meteorological parameters measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the African Monsoon Multidisciplinary Analysis (AMMA) campaign are presented to show the impact of NOx emissions from recently wetted soils in West Africa. NO emissions from soils have been previously observed in many geographical areas with different types of soil/vegetation cover during small scale studies and have been inferred at large scales from satellite measurements of NOx. This study is the first dedicated to showing the emissions of NOx at an intermediate scale between local surface sites and continental satellite measurements. The measurements reveal pronounced mesoscale variations in NOx concentrations closely linked to spatial patterns of antecedent rainfall. Fluxes required to maintain the NOx concentrations observed by the BAe-146 in a number of cases studies and for a range of assumed OH concentrations (1×106 to 1×107 molecules cm−3) are calculated to be in the range 8.4 to 36.1 ng N m−2 s−1. These values are comparable to the range of fluxes from 0.5 to 28 ng N m−2 s−1 reported from small scale field studies in a variety of non-nutrient rich tropical and sub-tropical locations reported in the review of Davidson and Kingerlee (1997). The fluxes calculated in the present study have been scaled up to cover the area of the Sahel bounded by 10 to 20 N and 10 E to 20 W giving an estimated emission of 0.03 to 0.30 Tg N from this area for July and August 2006. The observed chemical data also suggest that the NOx emitted from soils is taking part in ozone formation as ozone concentrations exhibit similar fine scale structure to the NOx, with enhancements over the wet soils. Such variability can not be explained on the basis of transport from other areas. Delon et al. (2008) is a companion paper to this one which models the impact of soil NOx emissions on the NOx and ozone concentration over West Africa during AMMA. It employs an artificial neural network to define the emissions of NOx from soils, integrated into a coupled chemistry-dynamics model. The results are compared to the observed data presented in this paper. Here we compare fluxes deduced from the observed data with the model-derived values from Delon et al. (2008).
Resumo:
Satellite measurements and numerical forecast model reanalysis data are used to compute an updated estimate of the cloud radiative effect on the global multi-annual mean radiative energy budget of the atmosphere and surface. The cloud radiative cooling effect through reflection of shortwave radiation dominates over the longwave heating effect, resulting in a net cooling of the climate system of –21 Wm-2. The shortwave radiative effect of cloud is primarily manifest as a reduction in the solar radiation absorbed at the surface of -53 Wm-2. Clouds impact longwave radiation by heating the moist tropical atmosphere (up to around 40 Wm-2 for global annual means) while enhancing the radiative cooling of the atmosphere over other regions, in particular higher latitudes and sub-tropical marine stratocumulus regimes. While clouds act to cool the climate system during the daytime, the cloud greenhouse effect heats the climate system at night. The influence of cloud radiative effect on determining cloud feedbacks and changes in the water cycle are discussed.
Resumo:
For many climate forcings the dominant response of the extratropical circulation is a latitudinal shift of the tropospheric mid-latitude jets. The magnitude of this response appears to depend on climatological jet latitude in general circulation models (GCMs): lower latitude jets exhibit a larger shift. The reason for this latitude dependence is investigated for a particular forcing, heating of the equatorial stratosphere, which shifts the jet poleward. Spin-up ensembles with a simplified GCM are used to examine the evolution of the response for five different jet structures. These differ in the latitude of the eddy-driven jet, but have similar sub-tropical zonal winds. It is found that lower latitude jets exhibit a larger response due to stronger tropospheric eddy-mean flow feedbacks. A dominant feedback responsible for enhancing the poleward shift is an enhanced equatorward refraction of the eddies, resulting in an increased momentum flux, poleward of the low latitude critical line. The sensitivity of feedback strength to jet structure is associated with differences in the coherence of this behaviour across the spectrum of eddy phase speeds. In the configurations used, the higher latitude jets have a wider range of critical latitude locations. This reduces the coherence of the momentum flux anomalies associated with different phase speeds, with low phase speeds opposing the effect of high phase speeds. This suggests that, for a given sub-tropical zonal wind strength, the latitude of the eddy driven jet affects the feedback through its influence on the width of the region of westerly winds and the range of critical latitudes on the equatorward flank of the jet.
Resumo:
An assessment of the fifth Coupled Models Intercomparison Project (CMIP5) models’ simulation of the near-surface westerly wind jet position and strength over the Atlantic, Indian and Pacific sectors of the Southern Ocean is presented. Compared with reanalysis climatologies there is an equatorward bias of 3.7° (inter-model standard deviation of ± 2.2°) in the ensemble mean position of the zonal mean jet. The ensemble mean strength is biased slightly too weak, with the largest biases over the Pacific sector (-1.6±1.1 m/s, 27 -22%). An analysis of atmosphere-only (AMIP) experiments indicates that 41% of the zonal mean position bias comes from coupling of the ocean/ice models to the atmosphere. The response to future emissions scenarios (RCP4.5 and RCP8.5) is characterized by two phases: (i) the period of most rapid ozone recovery (2000-2049) during which there is insignificant change in summer; and (ii) the period 2050-2098 during which RCP4.5 simulations show no significant change but RCP8.5 simulations show poleward shifts (0.30, 0.19 and 0.28°/decade over the Atlantic, Indian and Pacific sectors respectively), and increases in strength (0.06, 0.08 and 0.15 m/s/decade respectively). The models with larger equatorward position biases generally show larger poleward shifts (i.e. state dependence). This inter-model relationship is strongest over the Pacific sector (r=-0.89) and insignificant over the Atlantic sector (r=-0.50). However, an assessment of jet structure shows that over the Atlantic sector jet shift is significantly correlated with jet width whereas over the Pacific sector the distance between the sub-polar and sub-tropical westerly jets appears to be more important.
Resumo:
The two-way relationship between Rossby Wave-Breaking (RWB) and intensification of extra tropical cyclones is analysed over the Euro-Atlantic sector. In particular, the timing, intensity and location of cyclone development are related to RWB occurrences. For this purpose, two potential-temperature based indices are used to detect and classify anticyclonic and cyclonic RWB episodes from ERA-40 Re-Analysis data. Results show that explosive cyclogenesis over the North Atlantic (NA) is fostered by enhanced occurrence of RWB on days prior to the cyclone’s maximum intensification. Under such conditions, the eddy-driven jet stream is accelerated over the NA, thus enhancing conditions for cyclogenesis. For explosive cyclogenesis over the eastern NA, enhanced cyclonic RWB over eastern Greenland and anticyclonic RWB over the sub-tropical NA are observed. Typically only one of these is present in any given case, with the RWB over eastern Greenland being more frequent than its southern counterpart. This leads to an intensification of the jet over the eastern NA and enhanced probability of windstorms reaching Western Europe. Explosive cyclones evolving under simultaneous RWB on both sides of the jet feature a higher mean intensity and deepening rates than cyclones preceded by a single RWB event. Explosive developments over the western NA are typically linked to a single area of enhanced cyclonic RWB over western Greenland. Here, the eddy-driven jet is accelerated over the western NA. Enhanced occurrence of cyclonic RWB over southern Greenland and anticyclonic RWB over Europe is also observed after explosive cyclogenesis, potentially leading to the onset of Scandinavian Blocking. However, only very intense developments have a considerable influence on the large-scale atmospheric flow. Non-explosive cyclones depict no sign of enhanced RWB over the whole NA area. We conclude that the links between RWB and cyclogenesis over the Euro-Atlantic sector are sensitive to the cyclone’s maximum intensity, deepening rate and location.
Resumo:
We have compiled 223 sedimentary charcoal records from Australasia in order to examine the temporal and spatial variability of fire regimes during the Late Quaternary. While some of these records cover more than a full glacial cycle, here we focus on the last 70,000 years when the number of individual records in the compilation allows more robust conclusions. On orbital time scales, fire in Australasia predominantly reflects climate, with colder periods characterized by less and warmer intervals by more biomass burning. The composite record for the region also shows considerable millennial-scale variability during the last glacial interval (73.5–14.7 ka). Within the limits of the dating uncertainties of individual records, the variability shown by the composite charcoal record is more similar to the form, number and timing of Dansgaard–Oeschger cycles as observed in Greenland ice cores than to the variability expressed in the Antarctic ice-core record. The composite charcoal record suggests increased biomass burning in the Australasian region during Greenland Interstadials and reduced burning during Greenland Stadials. Millennial-scale variability is characteristic of the composite record of the sub-tropical high pressure belt during the past 21 ka, but the tropics show a somewhat simpler pattern of variability with major peaks in biomass burning around 15 ka and 8 ka. There is no distinct change in fire regime corresponding to the arrival of humans in Australia at 50 ± 10 ka and no correlation between archaeological evidence of increased human activity during the past 40 ka and the history of biomass burning. However, changes in biomass burning in the last 200 years may have been exacerbated or influenced by humans.
Resumo:
The impact of ceiling geometries on the performance of lightshelves was investigated using physical model experiments and radiance simulations. Illuminance level and distribution uniformity were assessed for a working plane in a large space located in sub-tropical climate regions where innovative systems for daylighting and shading are required. It was found that the performance of the lightshelf can be improved by changing the ceiling geometry; the illuminance level increased in the rear of the room and decreased in the front near the window compared to rooms having conventional horizontal ceilings. Moreover, greater uniformity was achieved throughout the room as a result of reducing the difference in the illuminance level between the front and rear of the room. Radiance simulation results were found to be in good agreement with physical model data obtained under a clear sky and high solar radiation. The best ceiling shape was found to be one that is curved in the front and rear of the room.
Resumo:
Explosive cyclones are intense extra-tropical low pressure systems featuring large deepening rates. In the Euro-Atlantic sector, they are a major source of life-threatening weather impacts due to their associated strong wind gusts, heavy precipitation and storm surges. The wintertime variability of the North Atlantic cyclonic activity is primarily modulated by the North Atlantic Oscillation (NAO). In this study, we investigate the interannual and multi-decadal variability of explosive North Atlantic cyclones using track density data from two reanalysis datasets (NCEP and ERA-40) and a control simulation of an atmosphere/ocean coupled General Circulation Model (GCM—ECHAM5/MPIOM1). The leading interannual and multi-decadal modes of variability of explosive cyclone track density are characterized by a strengthening/weakening pattern between Newfoundland and Iceland, which is mainly modulated by the NAO at both timescales. However, the NAO control of interannual cyclone variability is not stationary in time and abruptly fluctuates during periods of 20–25 years long both in NCEP and ECHAM5/MPIOM1. These transitions are accompanied by structural changes in the leading mode of explosive cyclone variability, and by decreased/enhanced baroclinicity over the sub-polar/sub-tropical North Atlantic. The influence of the ocean is apparently important for both the occurrence and persistence of such anomalous periods. In the GCM, the Atlantic Meridional Overturning Circulation appears to influence the large-scale baroclinicity and explosive cyclone development over the North Atlantic. These results permit a better understanding of explosive cyclogenesis variability at different climatic timescales and might help to improve predictions of these hazardous events.