15 resultados para Structural Stability
em CentAUR: Central Archive University of Reading - UK
Resumo:
The purity and structural stability of the high thermoelectric performance Cu12Sb4S13 and Cu10.4Ni1.6Sb4S13 tetrahedrite phases, synthesized by solid–liquid–vapor reaction and Spark Plasma Sintering, were studied at high temperature by Rietveld refinement using high resolution X-ray powder diffraction data, DSC/TG measurements and high resolution transmission electron microscopy. In a complementary study, the crystal structure of Cu10.5Ni1.5Sb4S13 as a function of temperature was investigated by powder neutron diffraction. The temperature dependence of the structural stability of ternary Cu12Sb4S13 is markedly different to that of the nickel-substituted phases, providing clear evidence for the significant and beneficial role of nickel substitution on both sample purity and stability of the tetrahedrite phase. Moreover, kinetic effects on the phase stability/decomposition have been identified and discussed in order to determine the maximum operating temperature for thermoelectric applications. The thermoelectric properties of these compounds have been determined for high density samples (>98%) prepared by Spark Plasma Sintering and therefore can be used as reference values for tetrahedrite samples. The maximum ZT of 0.8 was found for Cu10.4Ni1.6Sb4S13 at 700 K.
Resumo:
Onshore oil production pipelines are major installations in the petroleum industry, stretching many thousands of kilometres worldwide which also contain flowline additives. The current study focuses on the effect of the flowline additives on soil physico-chemical and biological properties and quantified the impact using resilience and resistance indices. Our findings are the first to highlight deleterious effect of flowline additives by altering some fundamental soil properties, including a complete loss of structural integrity of the impacted soil and a reduced capacity to degrade hydrocarbons mainly due to: (i) phosphonate salts (in scale inhibitor) prevented accumulation of scale in pipelines but also disrupted soil physical structure; (ii) glutaraldehyde (in biocides) which repressed microbial activity in the pipeline and reduced hydrocarbon degradation in soil upon environmental exposure; (iii) the combinatory effects of these two chemicals synergistically caused severe soil structural collapse and disruption of microbial degradation of petroleum hydrocarbons.
Resumo:
The non-quadratic conservation laws of the two-dimensional Euler equations are used to show that the gravest modes in a doubly-periodic domain with aspect ratio L = 1 are stable up to translations (or structurally stable) for finite-amplitude disturbances. This extends a previous result based on conservation of energy and enstrophy alone. When L 1, a saturation bound is established for the mode with wavenumber |k| = L −1 (the next-gravest mode), which is linearly unstable. The method is applied to prove nonlinear structural stability of planetary wave two on a rotating sphere.
Resumo:
The emergence of mental states from neural states by partitioning the neural phase space is analyzed in terms of symbolic dynamics. Well-defined mental states provide contexts inducing a criterion of structural stability for the neurodynamics that can be implemented by particular partitions. This leads to distinguished subshifts of finite type that are either cyclic or irreducible. Cyclic shifts correspond to asymptotically stable fixed points or limit tori whereas irreducible shifts are obtained from generating partitions of mixing hyperbolic systems. These stability criteria are applied to the discussion of neural correlates of consiousness, to the definition of macroscopic neural states, and to aspects of the symbol grounding problem. In particular, it is shown that compatible mental descriptions, topologically equivalent to the neurodynamical description, emerge if the partition of the neural phase space is generating. If this is not the case, mental descriptions are incompatible or complementary. Consequences of this result for an integration or unification of cognitive science or psychology, respectively, will be indicated.
Resumo:
The grass-free lawn is a novel development in modern ornamental horticulture where the traditional monoculture of grass is replaced by a variety of mowing-tolerant clonal forbs. It brings floral aesthetics and a diverse species approach to the use of lawn space. How the number of constituent forb species affects the aesthetic and structural performance of grass-free lawns was investigated using grass-free lawns composed of four, six and twelve British native clonal perennial forb species. Lawn productivity was seen to increase with increasing species number but the relationship was not linear. Plant cover was dynamic in all lawn types, varied between years and was not representative of individual species' floral performance. The behaviour of component species common to all lawns suggested that lawns with 12 species show greater structural stability than the lawns with a lower species number. Visual performance in lawns with the greatest species number was lower than in lawns with fewer species, with increasing variety in floral size and individual species floral productivity leading to a trade-off between diversity and floral performance. Individual species were seen to have different aesthetic functions in grass-free lawns either by providing flowers, ground coverage or both.
Resumo:
Two 28-membered octaazamacrocycles, [28]py(2)N(6) and Me-2[28]py(2)N(6), have been synthesized. The protonation constants of the N-methyl. derivative and the stability constants of its complexes with Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 25degreesC in 0.10 mol dm(-3) KNO3. The high overall basicity of Me-2[28]py(2)N(6) is ascribed to the weaker repulsion between protonated contiguous charged ammonium sites separated by propyl chains. These studies together with NMR, UV-vis and EPR spectroscopies indicated the presence of mono- and di-nuclear species, The single crystal structure of the complex [Ni-2([28]py(2)N(6))(H2O)(4)]Cl-4.3H(2)O was determined, and showed each nickel centre in a distorted octahedral co-ordination environment. The nickel centres are held within the macrocycle at a large distance of 6.991(g) Angstrom from each other. The formation of mononuclear complexes was evaluated theoretically via molecular mechanics (MM) and molecular dynamics (MD) calculations and showed that these large macrocycles have sufficient flexibility to encapsulate metal ions with different stereo-electronic sizes. Structures for small and large metal ions are proposed.
Resumo:
A series of the most common chelators used in magnetic resonance imaging ( MRI) and in radiopharmaceuticals for medical diagnosis and tumour therapy, H(4)dota, H(4)teta, H(8)dotp and H(8)tetp, is examined from a chemical point of view. Differences between 12- and 14-membered tetraazamacrocyclic derivatives with methylcarboxylate and methylphosphonate pendant arms and their chelates with divalent first-series transition metal and trivalent lanthanide ions are discussed on the basis of their thermodynamic stability constants, X- ray structures and theoretical studies.
Resumo:
Mixed ligand complexes: [Co(L)(bipy)] (.) 3H(2)O (1), [Ni(L)(phen)] (.) H2O (2), [Cu(L)(phen)] (.) 3H(2)O (3) and [Zn(L)(bipy)] (.) 3H(2)O (4), where L2- = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H(2)bzimida, hereafter, H,L), bipy = 2,2' bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10(-1) mol dm(-3) (NaNO3), at 25 +/- 1 degrees C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H-1L)(-), M(B)(2+), M(L)(B), M(H-1L)(B)(-), M-2(H-1L)(OH), (B)M(H-1L)M(B)(+), where H-1L3- represents two -COOH and the benzimidazole NI-H deprotonated quadridentate (O-, N, O-, N), or, quinquedentate (O-, N, O-, N, N-) function of the coordinated ligand H,L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)(2+) = (B)M(H-1L)M(B)(+) + H+ is favoured with higher pi-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Delta logK(M) values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The new dioxatetraazamacrocycle (L-1) was synthesized by a 2 + 2 condensation and characterized. Stability constants of its copper(II) complexes were determined by spectrophotometry in DMSO at 298.2 K in 0. 10 mol dm(-3) KClO4. Mainly dinuclear complexes are formed and the presence of mononuclear species is dependent on the counterion (Cl- or ClO4-). The association constants of the dinuclear copper(II) complexes with dicarboxylate anions [oxalate (oxa(2-)), malonate (mal(2-)), succinate (suc(2-)), and glutarate (glu(2-))] were also determined by spectrophotometry at 298.2 K in DMSO, and it was found that values decrease with an increase of the alkyl chain between the carboxylate groups. X-Band EPR spectra of the dicopper(II) complexes and of their cascade species in frozen DMSO exhibit dipole-dipole coupling, and their simulation, together with their UV-vis spectra, showed that the copper centres of the complexes in solution had square pyramidal geometries though with different distortions. From the experimental data, it was also possible to predict the Cu...Cu distances, the minimum being found at 6.4 angstrom for the (Cu2LCl4)-Cl-1 complex and then successively this distance slightly increases when the chloride anions are replaced by dicarboxylate anions, from 6.6 angstrom for oxa(2-) to 7.8 for glu(2-). The crystal structures of the dinuclear copper cascade species with oxa(2-) and suc(2-) were determined and showed one anion bridging both copper centres and Cu...Cu distances of 5.485(7) angstrom and 6.442(8) angstrom, respectively.
Resumo:
Trans-1, [HNEt3][Co-III(L-Se)(2)]center dot H2O and cis-1, [HNEt3][Co-III(L-Se)(2)]center dot 3H(2)O have been synthesized and characterized by single-crystal X-ray studies. The counter ion Et3NH+ plays a crucial role in the crystal packing leading to the formation of two distinctly different supramolecular assemblies in the two complexes. In trans-1, Co-bisphenolate units and triethylamine molecules are arranged in a linear fashion leading to a supramolecular columnar assembly along the crystallographic a-axis. In this assembly, triethylammonium ions are sandwiched between successive Co-bisphenolate units and act as gluing agents joining Co-bisphenolate units on either side through C-H center dot center dot center dot pi interactions. In sharp contrast to trans-1, Co-bisphenolate units and triethylammonium ions in cis-1 are arranged in a helical supramolecular assembly through similar C-H center dot center dot center dot pi interactions along the crystallographic b-axis. The Se center dot center dot center dot Se van der Waals interactions may be responsible for the predominant occurrence of the cis-isomer. The cyclic voltammetric studies showed quasi-reversible waves for the cobalt(III) -> cobalt(II) reductions with E-1/2 = 0.635 and 0.628 V vs. Ag/AgCl for cis-1 (at similar to 5 degrees C) and trans-1 (at similar to 25 degrees C), respectively. DFT calculations show that the trans-form is the thermodynamic product with higher stability than the cis-one, which is consistent with the variable temperature H-1 NMR studies
Resumo:
The ligands 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic-11-methylphosphonic acid (H(5)te3a1p) and 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic acid (H(3)te3a) were synthesized, the former one for the first time. The syntheses of these ligands were achieved from reactions on 1,4,8,11-tetraazacyclotetradecane-1,4,8-tris( carbamoylmethyl) hydroiodide (te3am center dot HI), and compounds (Hte3am)(+), 1, and (H(7)te3a1p)(2+), 4, were characterized by X-ray diffraction. Structures of two other compounds resulting from side-reactions, (H(2)te2lac)(2+), 2, and (H(4)te2a2p(OEt2))(2+), 3, were also determined by X-ray diffraction. Potentiometric titrations of H(5)te3a1p and H(3)te3a were performed at 298.2 K and ionic strength 0.10 mol dm(-3) in NMe4NO3 to determine their protonation constants. H-1 and P-31 NMR titrations of H(5)te3a1p were carried out in order to determine the very high first protonation constant of this ligand and to elucidate the sequence of protonation. Potentiometric studies of the two ligands with Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ metal ions performed in the same experimental conditions showed that the complexes of H5te3a1p present very high thermodynamic stability while complexes of H(3)te3a, particularly Co2+ and Zn2+, are even more stable. P-31 NMR spectra of the cadmium(II) complex of H(5)te3a1p showed that the phosphonate moiety was coordinated to the metal ion. The UV-vis-NIR spectroscopic data and magnetic moment values of Co2+ and Ni2+ complexes of H(5)te3a1p and H(3)te3a together with the EPR of the corresponding Cu2+ complexes indicated that all these complexes adopt distorted octahedral coordination geometries in solution. This was confirmed by the single crystal structure of [Cu-2(Hte3a)(H2O)(3)Cl]Cl-0.5(ClO4)(0.5) center dot 2H(2)O that showed two distorted octahedral copper centres bridged by a N-acetate pendant arm with a Cu center dot center dot center dot Cu distance of 4.890(1) angstrom. The first one is encapsulated into the macrocyclic cavity surrounded by four nitrogen and two oxygen donors from the macrocycle, whereas the second one is on the periphery of the macrocycle and is coordinated to two oxygen atoms of one acetate pendant arm in chelating fashion, one chloride and three water molecules.
Resumo:
A range of side chain liquid crystal copolymers have been prepared using mesogenic and non-mesogenic units. It is found that high levels of the non-mesogenic moieties may be introduced without completely disrupting the organization of the liquid crystal phase. Incorporation of this comonomer causes a marked reduction in the glass transition temperature (Tg), presumably as a result of enhanced backbone mobility and a corresponding lowering of the nematic transition temperature, thereby restricting the temperature range for stability of the liquid crystal phase. The effect of the interactions between the various components of these side-chain polymers on their electro-optic responses is described. Infrared (i.r.) dichroism measurements have been made to determine the order parameters of the liquid crystalline side-chain polymers. By identifying a certain band (CN stretching) in the i.r. absorption spectrum, the order parameter of the mesogenic groups can be obtained. The temperature and composition dependence of the observed order parameter are related to the liquid crystal phase transitions and to the electro-optic response. It is found that the introduction of the non-mesogenic units into the polymer chain lowers the threshold voltage of the electro-optic response over and above that due to the reduction in the order parameter. The dynamic electro-optic responses are dominated by the temperature-dependent viscosity and evidence is presented for relaxation processes involving the polymer backbone which are on a time scale greater than that for the mesogenic side-chain units.
Resumo:
Colloidal gas aphrons (CGA) have previously been defined as surfactant stabilized gas microbubbles and characterized for a number of surfactants in terms of stability, gas holdup and bubble size even though there is no conclusive evidence of their structure (that is, orientation of surfactant molecules at the gas–liquid interface, thickness of gas–liquid interface, and/or number of surfactant layers). Knowledge of the structure would enable us to use these dispersions more efficiently for their diverse applications (such as for removal of dyes, recovery of proteins, and enhancement of mass transfer in bioreactors). This study investigates dispersion and structural features of CGA utilizing a range of novel predictive (for prediction of aphron size and drainage rate) and experimental (electron microscopy and X-ray diffraction) methods. Results indicate structural differences between foams and CGA, which may have been caused by a multilayer structure of the latter as suggested by the electron and X-ray diffraction analysis.
Resumo:
An experimental search for crystalline forms of creatine including a variable temperature X-ray powder diffraction study has produced three polymorphs and a formic acid solvate. The crystal structures of creatine forms I and II were determined from X-ray powder diffraction data plus the creatine formic acid (1 : 1) solvate structure was obtained by single crystal X-ray diffraction methods. Evidence of a third polymorphic form of creatine obtained by rapid desolvation of creatine monohydrate is also presented. The results highlight the role of automated parallel crystallisation, slurry experiments and VT-XRPD as powerful techniques for effective physical form screening. They also highlight the importance of various complementary analytical techniques in structural characterisation and in achieving better understanding of the relationship between various solid-state forms. The structural relationships between various solid-state forms of creatine using the XPac method provided a rationale for the different relative stabilities of forms I and II of creatine with respect to the monohydrate form.
Resumo:
The effect of high pressure homogenisation (HPH) and heat treatments on physicochemical properties and physical stability of almond and hazelnut milks was studied. Vegetable milks were obtained and homogenised by applying 62, 103 and 172 MPa (MF1, MF2 and MF3, respectively). Untreated and MF3 samples were also submitted to two different heat treatments (85 °C/30 min (LH) or 121 °C/15 min (HH)). Physical and structural properties of the products were greatly affected by heat treatments and HPH. In almond milk, homogenised samples showed a significant reduction in particle size, which turned from bimodal and polydisperse to monodisperse distributions. Particle surface charge, clarity and Whiteness Index were increased and physical stability of samples was improved, without affecting either viscosity or protein stability. Hazelnut beverages showed similar trends, but HPH notably increased their viscosity while change their rheological behaviour, which suggested changes in protein conformation. HH treatments caused an increment of particle size due to the formation oil droplet-protein body clusters, associated with protein denaturation. Samples submitted to the combined treatment MF3 and LH showed the greatest stability.