4 resultados para Structural Break

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine the order of integration of EuroSterling interest rates by employing techniques that can allow for a structural break under the null and/or alternative hypothesis of the unit-root tests. In light of these results, we investigate the cointegrating relationship implied by the single, linear expectations hypothesis of the term structure of interest rates employing two techniques, one of which allows for the possibility of a break in the mean of the cointegrating relationship. The aim of the paper is to investigate whether or not the interest rate series can be viewed as I(1) processes and furthermore, to consider whether there has been a structural break in the series. We also determine whether, if we allow for a break in the cointegration analysis, the results are consistent with those obtained when a break is not allowed for. The main results reported in this paper support the conjecture that the ‘short’ Euro-currency rates are characterised as I(1) series that exhibit a structural break on or near Black Wednesday, 16 September 1992, whereas the ‘long’ rates are I(1) series that do not support the presence of a structural break. The evidence from the cointegration analysis suggests that tests of the expectations hypothesis based on data sets that include the ERM crisis period, or a period that includes a structural break, might be problematic if the structural break is not explicitly taken into account in the testing framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the effect of GARCH errors on the tests proposed byPerron (1997) for a unit root in the presence of a structural break. We assessthe impact of degeneracy and integratedness of the conditional varianceindividually and find that, apart from in the limit, the testing procedure isinsensitive to the degree of degeneracy but does exhibit an increasingover-sizing as the process becomes more integrated. When we consider the GARCHspecifications that we are likely to encounter in empirical research, we findthat the Perron tests are reasonably robust to the presence of GARCH and donot suffer from severe over-or under-rejection of a correct null hypothesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Bayesian Model Averaging approach to the estimation of lag structures is introduced, and applied to assess the impact of R&D on agricultural productivity in the US from 1889 to 1990. Lag and structural break coefficients are estimated using a reversible jump algorithm that traverses the model space. In addition to producing estimates and standard deviations for the coe¢ cients, the probability that a given lag (or break) enters the model is estimated. The approach is extended to select models populated with Gamma distributed lags of di¤erent frequencies. Results are consistent with the hypothesis that R&D positively drives productivity. Gamma lags are found to retain their usefulness in imposing a plausible structure on lag coe¢ cients, and their role is enhanced through the use of model averaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian Model Averaging (BMA) is used for testing for multiple break points in univariate series using conjugate normal-gamma priors. This approach can test for the number of structural breaks and produce posterior probabilities for a break at each point in time. Results are averaged over specifications including: stationary; stationary around trend and unit root models, each containing different types and number of breaks and different lag lengths. The procedures are used to test for structural breaks on 14 annual macroeconomic series and 11 natural resource price series. The results indicate that there are structural breaks in all of the natural resource series and most of the macroeconomic series. Many of the series had multiple breaks. Our findings regarding the existence of unit roots, having allowed for structural breaks in the data, are largely consistent with previous work.