9 resultados para Stokes, Natalie,

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical algorithm for the biharmonic equation in domains with piecewise smooth boundaries is presented. It is intended for problems describing the Stokes flow in the situations where one has corners or cusps formed by parts of the domain boundary and, due to the nature of the boundary conditions on these parts of the boundary, these regions have a global effect on the shape of the whole domain and hence have to be resolved with sufficient accuracy. The algorithm combines the boundary integral equation method for the main part of the flow domain and the finite-element method which is used to resolve the corner/cusp regions. Two parts of the solution are matched along a numerical ‘internal interface’ or, as a variant, two interfaces, and they are determined simultaneously by inverting a combined matrix in the course of iterations. The algorithm is illustrated by considering the flow configuration of ‘curtain coating’, a flow where a sheet of liquid impinges onto a moving solid substrate, which is particularly sensitive to what happens in the corner region formed, physically, by the free surface and the solid boundary. The ‘moving contact line problem’ is addressed in the framework of an earlier developed interface formation model which treats the dynamic contact angle as part of the solution, as opposed to it being a prescribed function of the contact line speed, as in the so-called ‘slip models’. Keywords: Dynamic contact angle; finite elements; free surface flows; hybrid numerical technique; Stokes equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a study of singular solutions of the problem of traveling gravity water waves on flows with vorticity. We show that, for a certain class of vorticity functions, a sequence of regular waves converges to an extreme wave with stagnation points at its crests. We also show that, for any vorticity function, the profile of an extreme wave must have either a corner of 120° or a horizontal tangent at any stagnation point about which it is supposed symmetric. Moreover, the profile necessarily has a corner of 120° if the vorticity is nonnegative near the free surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the Stokes conjecture concerning the shape of extreme two-dimensional water waves. By new geometric methods including a nonlinear frequency formula, we prove the Stokes conjecture in the original variables. Our results do not rely on structural assumptions needed in previous results such as isolated singularities, symmetry and monotonicity. Part of our results extends to the mathematical problem in higher dimensions.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study stagnation points of two-dimensional steady gravity free-surface water waves with vorticity. We obtain for example that, in the case where the free surface is an injective curve, the asymptotics at any stagnation point is given either by the “Stokes corner flow” where the free surface has a corner of 120°, or the free surface ends in a horizontal cusp, or the free surface is horizontally flat at the stagnation point. The cusp case is a new feature in the case with vorticity, and it is not possible in the absence of vorticity. In a second main result we exclude horizontally flat singularities in the case that the vorticity is 0 on the free surface. Here the vorticity may have infinitely many sign changes accumulating at the free surface, which makes this case particularly difficult and explains why it has been almost untouched by research so far. Our results are based on calculations in the original variables and do not rely on structural assumptions needed in previous results such as isolated singularities, symmetry and monotonicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the linear and nonlinear stability of stationary solutions of the forced two-dimensional Navier-Stokes equations on the domain [0,2π]x[0,2π/α], where α ϵ(0,1], with doubly periodic boundary conditions. For the linear problem we employ the classical energy{enstrophy argument to derive some fundamental properties of unstable eigenmodes. From this it is shown that forces of pure χ2-modes having wavelengths greater than 2π do not give rise to linear instability of the corresponding primary stationary solutions. For the nonlinear problem, we prove the equivalence of nonlinear stability with respect to the energy and enstrophy norms. This equivalence is then applied to derive optimal conditions for nonlinear stability, including both the high-and low-Reynolds-number limits.