3 resultados para Stochastic Differential Utility
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper builds upon previous research on currency bands, and provides a model for the Colombian peso. Stochastic differential equations are combined with information related to the Colombian currency band to estimate competing models of the behaviour of the Colombian peso within the limits of the currency band. The resulting moments of the density function for the simulated returns describe adequately most of the characteristics of the sample returns data. The factor included to account for the intra-marginal intervention performed to drive the rate towards the Central Parity accounts only for 6.5% of the daily change, which supports the argument that intervention, if performed by the Central Bank, it is not directed to push the currency towards the limits. Moreover, the credibility of the Colombian Central Bank, Banco de la República’s ability to defend the band seems low.
Resumo:
We construct a quasi-sure version (in the sense of Malliavin) of geometric rough paths associated with a Gaussian process with long-time memory. As an application we establish a large deviation principle (LDP) for capacities for such Gaussian rough paths. Together with Lyons' universal limit theorem, our results yield immediately the corresponding results for pathwise solutions to stochastic differential equations driven by such Gaussian process in the sense of rough paths. Moreover, our LDP result implies the result of Yoshida on the LDP for capacities over the abstract Wiener space associated with such Gaussian process.
Resumo:
A direct method is presented for determining the uncertainty in reservoir pressure, flow, and net present value (NPV) using the time-dependent, one phase, two- or three-dimensional equations of flow through a porous medium. The uncertainty in the solution is modelled as a probability distribution function and is computed from given statistical data for input parameters such as permeability. The method generates an expansion for the mean of the pressure about a deterministic solution to the system equations using a perturbation to the mean of the input parameters. Hierarchical equations that define approximations to the mean solution at each point and to the field covariance of the pressure are developed and solved numerically. The procedure is then used to find the statistics of the flow and the risked value of the field, defined by the NPV, for a given development scenario. This method involves only one (albeit complicated) solution of the equations and contrasts with the more usual Monte-Carlo approach where many such solutions are required. The procedure is applied easily to other physical systems modelled by linear or nonlinear partial differential equations with uncertain data.