23 resultados para Steroid Hydroxylases

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen is a ligand for the estrogen receptor (ER), which on binding 17beta-estradiol, functions as a ligand-activated transcription factor and regulates the transcription of target genes. This is the slow genomic mode of action. However, rapid non-genomic actions of estrogen also exist at the cell membrane. Using a novel two-pulse paradigm in which the first pulse rapidly initiates non-genomic actions using a membrane-limited estrogen conjugate (E-BSA), while the second pulse promotes genomic transcription from a consensus estrogen response element (ERE), we have demonstrated that rapid actions of estrogen potentiate the slower transcriptional response from an ERE-reporter in neuroblastoma cells. Since rapid actions of estrogen activate kinases, we used selective inhibitors in the two-pulse paradigm to determine the intracellular signaling cascades important in such potentiation. Inhibition of protein kinase A (PKA), PKC, mitogen activated protein kinase (MAPK) or phosphatidylinositol 3-OH kinase (PI-3K) in the first pulse decreases potentiation of transcription. Also, our data with both dominant negative and constitutive mutants of Galpha subunits show that Galpha(q) initiates the rapid signaling cascade at the membrane in SK-N-BE(2)C neuroblastoma cells. We discuss two models of multiple kinase activation at the membrane Pulses of estrogen induce lordosis behavior in female rats. Infusion of E-BSA into the ventromedial hypothalamus followed by 17beta-estradiol in the second pulse could induce lordosis behavior, demonstrating the applicability of this paradigm in vivo. A model where non-genomic actions of estrogen couple to genomic actions unites both aspects of hormone action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic studies of autism spectrum conditions (ASC) have mostly focused on the "low functioning" severe clinical subgroup, treating it as a rare disorder. However, ASC is now thought to be relatively common ( approximately 1%), and representing one end of a quasi-normal distribution of autistic traits in the general population. Here we report a study of common genetic variation in candidate genes associated with autistic traits and Asperger syndrome (AS). We tested single nucleotide polymorphisms in 68 candidate genes in three functional groups (sex steroid synthesis/transport, neural connectivity, and social-emotional responsivity) in two experiments. These were (a) an association study of relevant behavioral traits (the Empathy Quotient (EQ), the Autism Spectrum Quotient (AQ)) in a population sample (n=349); and (b) a case-control association study on a sample of people with AS, a "high-functioning" subgroup of ASC (n=174). 27 genes showed a nominally significant association with autistic traits and/or ASC diagnosis. Of these, 19 genes showed nominally significant association with AQ/EQ. In the sex steroid group, this included ESR2 and CYP11B1. In the neural connectivity group, this included HOXA1, NTRK1, and NLGN4X. In the socio-responsivity behavior group, this included MAOB, AVPR1B, and WFS1. Fourteen genes showed nominally significant association with AS. In the sex steroid group, this included CYP17A1 and CYP19A1. In the socio-emotional behavior group, this included OXT. Six genes were nominally associated in both experiments, providing a partial replication. Eleven genes survived family wise error rate (FWER) correction using permutations across both experiments, which is greater than would be expected by chance. CYP11B1 and NTRK1 emerged as significantly associated genes in both experiments, after FWER correction (P<0.05). This is the first candidate-gene association study of AS and of autistic traits. The most promising candidate genes require independent replication and fine mapping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone morphogenetic proteins (BMPs) and their receptors are expressed in ovarian theca cells (TC) and granulosa cells (GC) and BMPs have been implicated in the regulation of several aspects of follicle development including thecal androgen production and granulosal oestrogen production. Their potential involvement in luteal function has received less attention. in this study, we first compared relative abundance of mRNA transcripts for BMPs, activin-beta A and BMP/activin receptors in bovine corpus luteum (CL) and follicular theca and granulosa layers before undertaking functional in vitro experiments to test the effect of selected ligands (BMP6 and activin A) on luteinizing bovine TC and GC. Relative to P-actin transcript abundance, CL tissue contained more BMP4 and -6 mRNA than granulosa, more BMP2 mRNA than theca but much less activin-beta A mRNA than both granulosa and theca. Transcripts for all seven BMP/activin receptors were readily detected in each tissue and two transcripts (BMPRII, ActRIIA) were more abundant in CL than either theca or granulosa, consistent with tissue responsiveness. In vitro luteinization of TC and GC from antral follicles (4-6 mm) was achieved by culturing with 5% serum for 6 days. Treatment with BMP6 (0, 2, 10, and 50 ng/ml) and activin A (0, 2, 10 and 50 ng/ml) under these conditions dose-dependently suppressed forskolin-induced progesterone (P-4) secretion from both cell types without affecting cell number. BMP6 reduced forskolin-stimulated upregulation of STAR mRNA and raised 'basal' CYP17A1 mRNA level in theca-lutein cells without affecting expression of CYP11A1 or hydroxy-Delta-5-steroid dehydrogenase, 3 beta- and steroid Delta-isomerase 1 (HSD3B1). In granulosa-lutein cells, STAR transcript abundance was not affected by BMP6, whereas forskolin-induced expression of CYP11A1, HSD3B1, CYP19A1 and oxytocin transcripts was reduced. In both cell types, follistatin attenuated the suppressive effect of activin A and BMP6 on forskolin-induced P4 secretion but had no effect alone. Granulosa-lutein cells secreted low levels of endogenous activin A (similar to 1 ng/ml); BMP6 reduced this, while raising follistatin secretion thus decreasing activin A:follistatin ratio. Collectively, these findings support inhibitory roles for BMP/activin signalling in luteinization and steroidogenesis in both TC and GC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the years, the MCF7 human breast cancer cell line has provided a model system for the study of cellular and molecular mechanisms in oestrogen regulation of cell proliferation and in progression to oestrogen and antioestrogen independent growth. Global gene expression profiling has shown that oestrogen action in MCF7 cells involves the coordinated regulation of hundreds of genes across a wide range of functional groupings and that more genes are down regulated than upregulated. Adaptation to long-term oestrogen deprivation, which results in loss of oestrogen-responsive growth, involves alterations to gene patterns not only at early time points (0-4 weeks) but continuing through to later times (20-55 weeks), and even involves alterations to patterns of oestrogen-regulated gene expression. Only 48% of the genes which were regulated >= 2-fold by oestradiol in oestrogen-responsive cells retained this responsiveness after long-term oestrogen deprivation but other genes developed de novo oestrogen regulation. Long-term exposure to fulvestrant, which resulted in loss of growth inhibition by the antioestrogen, resulted in some very large fold changes in gene expression up to 10,000-fold. Comparison of gene profiles produced by environmental chemicals with oestrogenic properties showed that each ligand gave its own unique expression profile which suggests that environmental oestrogens entering the human breast may give rise to a more complex web of interference in cell function than simply mimicking oestrogen action at inappropriate times. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell culture models of antioestrogen resistance often involve applying selective pressures of oestrogen deprivation simultaneously with addition of tamoxifen or fulvestrant (Faslodex, ICI 182,780) which makes it difficult to distinguish events in development of antioestrogen resistance from those in loss of response to oestrogen or other components. We describe here time courses of loss of antioestrogen response using either oestrogen-maintained or oestrogen-deprived MCF7 cells in which the only alteration to the culture medium was addition of 10(-6) M tamoxifen or 10(-7) M fulvestrant. In both oestrogen-maintained and oestrogen-deprived models, loss of growth response to tamoxifen was not associated with loss of response to fulvestrant. However, loss of growth response to fulvestrant was associated in both models with concomitant loss of growth response to tamoxifen. Measurement of oestrogen receptor alpha (ER alpha) and oestrogen receptor beta (ER beta) mRNA by real-time RT-PCR together with ER alpha and ER beta protein by Western immunoblotting revealed substantial changes to ER alpha levels but very little alteration to ER beta levels following development of antioestrogen resistance. In oestrogen-maintained cells, tamoxifen resistance was associated with raised levels of ERa mRNA/protein. However by contrast, in oestrogen-deprived MCF7 cells, where oestrogen deprivation alone had already resulted in increased levels of ERa mRNA/protein, long-term tamoxifen exposure now reduced ER alpha levels. Whilst long-term exposure to fulvestrant reduced ERa. mRNA/protein levels in the oestrogen-maintained cells to a level barely detectable by Western immunoblotting and non-functional in inducing gene expression (ERE-LUC reporter or pS2), in oestrogen-deprived cells the reduction was much less substantial and these cells retained an oestrogen-induction of both the ERE-LUC reporter gene and the endogenous pS2 gene which could still be inhibited by antioestrogen. This demonstrates that whilst ER alpha can be abrogated by fulvestrant and increased by tamoxifen in some circumstances, this does not always hold true and mechanisms other than alteration to ER must be involved in the development of antioestrogen resistant growth. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have compared the oestrogenic properties of phytoestrogens in a wide variety of disparate assays. Since not all phytoestrogens have been tested in each assay, this makes inter-study comparisons and ranking oestrogenic potency difficult. In this report, we have compared the oestrogen agonist and antagonist activity of eight phytoestrogens (genistein, daidzein, equol, miroestrol, deoxymiroestrol, 8-prenylnaringenin, coumestrol and resveratrol) in a range of assays all based within the same receptor and cellular context of the MCF7 human breast cancer cell line. The relative binding of each phytoestrogen to oestrogen receptor (ER) of MCF7 cytosol was calculated from the molar excess needed for 50 % inhibition of [H-3]oestradiol binding (IC50), and was in the order coumestrol (35x)/8-prenylnaringenin (45 x)/deoxymiroestrol (50 x) > miroestrol (260x) > genistein (1000x) > equol (4000x) > daidzein (not achieved: 40 % inhibition at 10(4)-fold molar excess) > resveratrol (not achieved: 10 % inhibition at 10(5)-fold molar excess). For cell-based assays, the rank order of potency (estimated in terms of the concentration needed to achieve a response equivalent to 50 % of that found with 17 beta-oestradiol (IC50)) remained very similar for all the assays whether measuring ligand ability to induce a stably transfected oestrogen-responsive ERE-CAT reporter gene, cell growth in terms of proliferation rate after 7 days or cell growth in terms of saturation density after 14 days. The IC50 values for these three assays in order were for 17 beta-oestradiol (1 x 10-(11) M, 1 x 10-(11) M, 2 x 10(-11) M), and in rank order of potency for the phytoestrogens, deoxymiroestrol (1 x 10(-10) M, 3 x 10(-11) M, 2 x 10(-11) M) > miroestrol (3 x 10(-10) M, 2 x 10(-11) M, 8 x 10(-11) M) > 8-prenylnaringenin (1 x 10(-9) M, 3 x 10(-10) M, 3 x 10(-10) M) > cournestrol (3 x 10(-8) M, 2 x 10(-8) M, 3 x 10(-8) M) > genistein (4 x 10(-8) M, 2 x 10(-8) M, 1 x 10(-8) M)/equol (1 x 10(-7) M, 3 x 10(-8) M, 2 x 10(-8) M) > daidzein (3 x 10(-7) M, 2 x 10(-7) M, 4 x 10(-8) M) > resveratrol (4 x 10(-6) M, not achieved, not achieved). Despite using the same receptor context of the MCF7 cells, this rank order differed from that determined from receptor binding. The most marked difference was for cournestrol and 8-prenylnaringenin which both displayed a relatively potent ability to displace [3H]oestradiol from cytosolic ER compared with their much lower activity in the cell-based assays. Albeit at varying concentrations, seven of the eight phytoestrogens (all except resveratrol) gave similar maximal responses to that given by 17 beta-oestradiol in cell-based assays which makes them full oestrogen agonists. We found no evidence for any oestrogen antagonist action of any of these phytoestrogens at concentrations of up to 10(-6) M on either reporter gene induction or on stimulation of cell growth. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of external genitalia in mammalian embryos requires tight coordination of a complex series of morphogenetic events involving outgrowth, proximodistal and dorsoventral patterning, and epithelial tubulogenesis. Hypospadias is a congenital defect of the external genitalia that results from failure of urethral tube closure. Although this is the second most common birth defect in humans, affecting one in every 250 children, the molecular mechanisms that regulate morphogenesis of the mammalian urethra are poorly understood. We report that mice lacking the IIIb isoform of fibroblast growth factor receptor 2 (Fgfr2) exhibit severe hypospadias. Urethral signaling regions, as indicated by Shh and Fgf8 expression, are established in Fgfr2-IIIb null mice; however, cell proliferation arrests prematurely and maturation of the urethral epithelium is disrupted. Fgfr2-IIIb(-/-) mutants fail to maintain the progenitor cell population required for uroepithelial renewal during tubular morphogenesis. In addition, we show that antagonism of the androgen receptor (AR) leads to loss of Fgfr2-IIIb and Fgf10 expression in the urethra, and an associated hypospadias phenotype, suggesting that these genes are downstream targets of AR during external genital development. Genitourinary defects resulting from disruption of AR activity, by either genetic or environmental factors, may therefore involve negative regulation of the Fgfr2 pathway. This represents the first example of how the developing genitourinary system integrates cues from systemically circulating steroid hormones with a locally expressed growth factor pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alpha-Tocopherol Beta-Carotene Cancer Prevention Study has provided the first evidence implicating vitamin E in hormone synthesis. The effect of vitamin E on stereoidogenesis in testes and adrenal glands was assessed in growing rats using Affymetrix gene-chip technology. Dietary supplementation of rats with vitamin E (60 mg/kg feed) for a period of 429 days caused a significant repression of genes encoding for proteins centrally involved in the uptake (low-density lipoprotein receptor) and de novo synthesis (for example, 7-dehydrocholesterol reductase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, isopentenyl-diphosphate delta-isomerase, and farnesyl pyrophosphate synthetase) of cholesterol, the precursor of all steroid hormones. The present investigation indicates that dietary vitamin E may induce changes in stereoidogenesis by affecting cholesterol homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent discovery that vitamin E (VE) regulates gene activity at the transcriptional level indicates that VE may exert part of its biological effects by mechanisms which may be independent of its well-recognised antioxidant function. The objective of this study was the identification of hepatic vitamin E-sensitive genes and examination of the effects of VE on their corresponding biological endpoints. Two groups of male rats were randomly assigned to either a VE-sufficient diet or to a control diet deficient in VE for 290 days. High-density oligonucleotide microarrays comprising over 7000 genes were used to assess the transcriptional response of the liver. Differential gene expression was monitored over a period of 9 months, at four different time-points, and rats were individually profiled. This experimental strategy identified several VE-sensitive genes, which were chronically altered by dietary VE. VE supplementation down-regulated scavenger receptor CD36, coagulation factor IX and 5-alpha-steroid reductase type 1 mRNA levels while hepatic gamma glutamyl-cysteinyl synthetase was significantly up-regulated. Measurement of the corresponding biological endpoints such as activated partial thromboplastin time, plasma dihydrotestosterone and hepatic glutathione substantiated the gene chip data which indicated that dietary VE plays an important role in a range of metabolic processes within the liver. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Animal research shows that early adverse experience results in altered glucocorticoid levels in adulthood, either raised basal levels or accentuated responses to stress. If a similar phenomenon operates in humans, this suggests a biological mechanism whereby early adversity might transmit risk for major depression, glucocorticoid elevations being associated with the development of this disorder. Methods. We measured salivary cortisol at 8:00 Am and 8:00 Pm over 10 days in 13-year-old adolescents who had (n = 48) or bad not (n = 39) been exposed to postnatal maternal depression. Results: Maternal postnatal depression was associated with higher, more variable morning cortisol in offspring, a pattern previously found to predict major depression. Conclusions. Early adverse experiences might alter later steroid levels in humans. Because maternal depression confers added risk for depression to children, these alterations might provide a link between early events and later psychopathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: We have previously reported higher and more variable salivary morning cortisol in 13-year-old adolescents whose mothers were depressed in the postnatal period, compared with control group adolescents whose mothers did not develop postnatal depression (PND). This observation suggested a biological mechanism by which intrafamilial risk for depressive disorder may be transmitted. In the current article, we examined whether the cortisol disturbances observed at 13 years could predict depressive symptornatology in adolescents at 16 years of age. Methods: We measured self-reported depressive symptoms in 16-year-old adolescents who had (n = 48) or had not (n = 39) been exposed to postnatal maternal depression and examined their prediction by morning and evening cortisol indices obtained via 10 days of salivary collections at 13 years. Results: Elevated morning cortisol secretion at 13 years, and particularly the maximum level recorded over 10 days of collection, predicted elevated depressive symptoms at 16 years over and above 13-year depressive symptom levels and other possible confounding factors. Morning cortisol secretion mediated an association between maternal PND and symptornatology in 16-year-old offspring. Conclusions: Alterations in steroid secretion observed in association with maternal PND may provide a mechanism by which risk for depression is transmitted from mother to offspring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular and behavioural evidence points to an association between sex-steroid hormones and autism spectrum conditions (ASC) and/or autistic traits. Prenatal androgen levels are associated with autistic traits, and several genes involved in steroidogenesis are associated with autism, Asperger Syndrome and/or autistic traits. Furthermore, higher rates of androgen-related conditions (such as Polycystic Ovary Syndrome, hirsutism, acne and hormone-related cancers) are reported in women with autism spectrum conditions. A key question therefore is if serum levels of gonadal and adrenal sex-steroids (particularly testosterone, estradiol, dehydroepiandrosterone sulfate and androstenedione) are elevated in individuals with ASC. This was tested in a total sample of n=166 participants. The final eligible sample for hormone analysis comprised n=128 participants, n=58 of whom had a diagnosis of Asperger Syndrome or high functioning autism (33 males and 25 females) and n=70 of whom were age- and IQ-matched typical controls (39 males and 31 females). ASC diagnosis (without any interaction with sex) strongly predicted androstenedione levels (p<0.01), and serum androstenedione levels were significantly elevated in the ASC group (Mann-Whitney W=2677, p=0.002), a result confirmed by permutation testing in females (permutation-corrected p=0.02). This result is discussed in terms of androstenedione being the immediate precursor of, and being converted into, testosterone, dihydrotestosterone, or estrogens in hormone-sensitive tissues and organs.