58 resultados para Stepwise regression
em CentAUR: Central Archive University of Reading - UK
Resumo:
Multiple regression analysis is a statistical technique which allows to predict a dependent variable from m ore than one independent variable and also to determine influential independent variables. Using experimental data, in this study the multiple regression analysis is applied to predict the room mean velocity and determine the most influencing parameters on the velocity. More than 120 experiments for four different heat source locations were carried out in a test chamber with a high level wall mounted air supply terminal at air change rates 3-6 ach. The influence of the environmental parameters such as supply air momentum, room heat load, Archimedes number and local temperature ratio, were examined by two methods: a simple regression analysis incorporated into scatter matrix plots and multiple stepwise regression analysis. It is concluded that, when a heat source is located along the jet centre line, the supply momentum mainly influences the room mean velocity regardless of the plume strength. However, when the heat source is located outside the jet region, the local temperature ratio (the inverse of the local heat removal effectiveness) is a major influencing parameter.
Resumo:
The aim of the work was to study the survival of Lactobacillus plantarum NCIMB 8826 in model solutions and develop a mathematical model describing its dependence on pH, citric acid and ascorbic acid. A Central Composite Design (CCD) was developed studying each of the three factors at five levels within the following ranges, i.e., pH (3.0-4.2), citric acid (6-40 g/L), and ascorbic acid (100-1000 mg/L). In total, 17 experimental runs were carried out. The initial cell concentration in the model solutions was approximately 1 × 10(8)CFU/mL; the solutions were stored at 4°C for 6 weeks. Analysis of variance (ANOVA) of the stepwise regression demonstrated that a second order polynomial model fits well the data. The results demonstrated that high pH and citric acid concentration enhanced cell survival; one the other hand, ascorbic acid did not have an effect. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate, cranberry and lemon juice. The model predicted well the cell survival in orange, blackcurrant and pineapple, however it failed to predict cell survival in grapefruit and pomegranate, indicating the influence of additional factors, besides pH and citric acid, on cell survival. Very good cell survival (less than 0.4 log decrease) was observed after 6 weeks of storage in orange, blackcurrant and pineapple juice, all of which had a pH of about 3.8. Cell survival in cranberry and pomegranate decreased very quickly, whereas in the case of lemon juice, the cell concentration decreased approximately 1.1 logs after 6 weeks of storage, albeit the fact that lemon juice had the lowest pH (pH~2.5) among all the juices tested. Taking into account the results from the compositional analysis of the juices and the model, it was deduced that in certain juices, other compounds seemed to protect the cells during storage; these were likely to be proteins and dietary fibre In contrast, in certain juices, such as pomegranate, cell survival was much lower than expected; this could be due to the presence of antimicrobial compounds, such as phenolic compounds.
Resumo:
Question: What are the correlations between the degree of drought stress and temperature, and the adoption of specific adaptive strategies by plants in the Mediterranean region? Location: 602 sites across the Mediterranean region. Method: We considered 12 plant morphological and phenological traits, and measured their abundance at the sites as trait scores obtained from pollen percentages. We conducted stepwise regression analyses of trait scores as a function of plant available moisture (α) and winter temperature (MTCO). Results: Patterns in the abundance for the plant traits we considered are clearly determined by α, MTCO or a combination of both. In addition, trends in leaf size, texture, thickness, pubescence and aromatic leaves and other plant level traits such as thorniness and aphylly, vary according to the life form (tree, shrub, forb), the leaf type (broad, needle) and phenology (evergreen, summer-green). Conclusions: Despite conducting this study based on pollen data we have identified ecologically plausible trends in the abundance of traits along climatic gradients. Plant traits other than the usual life form, leaf type and leaf phenology carry strong climatic signals. Generally, combinations of plant traits are more climatically diagnostic than individual traits. The qualitative and quantitative relationships between plant traits and climate parameters established here will help to provide an improved basis for modelling the impact of climate changes on vegetation and form a starting point for a global analysis of pollen-climate relationships
Determinants of fruit and vegetable intake in England: a re-examination based on quantile regression
Resumo:
Objective To examine die sociodemographic determinants of fruit and vegetable (F&V) consumption in England and determine the differential effects of socioeconomic variables at various parts of the intake distribution, with a special focus on severely inadequate intakes Design Quantile regression, expressing F&V intake as a function of sociodemographic variables, is employed. Here, quantile regression flexibly allows variables such as ethnicity to exert effects on F&V intake that. vary depending oil existing levels of intake. Setting The 2003 Health survey of England. Subjects Data were from 11044 adult individuals. Results The influence of particular sociodemographic variables is found to vary significantly across the intake distribution We conclude that women consume more F&V than men, Asians and Hacks mole dian Whites, co-habiting individuals more than single-living ones Increased incomes and education also boost intake However, the key general finding of the present study is that the influence of most variables is relatively weak in the area of greatest concern, i e among those with the most inadequate intakes in any reference group. Conclusions. Our findings emphasise the importance of allowing the effects of socio-economic drivers to vary across the intake distribution The main finding, that variables which exert significant influence on F&V Intake at other parts Of the conditional distribution have a relatively weak influence at the lower tail, is cause for concern. It implies that in any defined group, those consuming the lease F&V are hard to influence using compaigns or policy levers.
Resumo:
Inferring the spatial expansion dynamics of invading species from molecular data is notoriously difficult due to the complexity of the processes involved. For these demographic scenarios, genetic data obtained from highly variable markers may be profitably combined with specific sampling schemes and information from other sources using a Bayesian approach. The geographic range of the introduced toad Bufo marinus is still expanding in eastern and northern Australia, in each case from isolates established around 1960. A large amount of demographic and historical information is available on both expansion areas. In each area, samples were collected along a transect representing populations of different ages and genotyped at 10 microsatellite loci. Five demographic models of expansion, differing in the dispersal pattern for migrants and founders and in the number of founders, were considered. Because the demographic history is complex, we used an approximate Bayesian method, based on a rejection-regression algorithm. to formally test the relative likelihoods of the five models of expansion and to infer demographic parameters. A stepwise migration-foundation model with founder events was statistically better supported than other four models in both expansion areas. Posterior distributions supported different dynamics of expansion in the studied areas. Populations in the eastern expansion area have a lower stable effective population size and have been founded by a smaller number of individuals than those in the northern expansion area. Once demographically stabilized, populations exchange a substantial number of effective migrants per generation in both expansion areas, and such exchanges are larger in northern than in eastern Australia. The effective number of migrants appears to be considerably lower than that of founders in both expansion areas. We found our inferences to be relatively robust to various assumptions on marker. demographic, and historical features. The method presented here is the only robust, model-based method available so far, which allows inferring complex population dynamics over a short time scale. It also provides the basis for investigating the interplay between population dynamics, drift, and selection in invasive species.
Resumo:
The terminally protected tripeptide Boc-Ala(1)-Leu(2)-Ala(3)-OMe 1 forms antiparallel hydrogen-bonded dimers of two different conformers in the asymmetric unit and the individual dimers then self-associate to form supramolecular beta-sheet structures in crystals and amyloid-like fibrils in the solid state.
Resumo:
We report rates of regression and associated findings in a population derived group of 255 children aged 9-14 years, participating in a prevalence study of autism spectrum disorders (ASD); 53 with narrowly defined autism, 105 with broader ASD and 97 with non-ASD neurodevelopmental problems, drawn from those with special educational needs within a population of 56,946 children. Language regression was reported in 30% with narrowly defined autism, 8% with broader ASD and less than 3% with developmental problems without ASD. A smaller group of children were identified who underwent a less clear setback. Regression was associated with higher rates of autistic symptoms and a deviation in developmental trajectory. Regression was not associated with epilepsy or gastrointestinal problems.
Resumo:
Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward constrained regression manner. The leave-one-out (LOO) test score is used for kernel selection. The jackknife parameter estimator subject to positivity constraint check is used for the parameter estimation of a single parameter at each forward step. As such the proposed approach is simple to implement and the associated computational cost is very low. An illustrative example is employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to that of the classical Parzen window estimate.
Resumo:
Using the classical Parzen window estimate as the target function, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density estimates. The proposed algorithm incrementally minimises a leave-one-out test error score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights are finally updated using the multiplicative nonnegative quadratic programming algorithm, which has the ability to reduce the model size further. Except for the kernel width, the proposed algorithm has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Two examples are used to demonstrate the ability of this regression-based approach to effectively construct a sparse kernel density estimate with comparable accuracy to that of the full-sample optimised Parzen window density estimate.
Resumo:
We consider a fully complex-valued radial basis function (RBF) network for regression application. The locally regularised orthogonal least squares (LROLS) algorithm with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF network models, is extended to the fully complex-valued RBF network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully complex-valued RBF network.
Resumo:
A novel sparse kernel density estimator is derived based on a regression approach, which selects a very small subset of significant kernels by means of the D-optimality experimental design criterion using an orthogonal forward selection procedure. The weights of the resulting sparse kernel model are calculated using the multiplicative nonnegative quadratic programming algorithm. The proposed method is computationally attractive, in comparison with many existing kernel density estimation algorithms. Our numerical results also show that the proposed method compares favourably with other existing methods, in terms of both test accuracy and model sparsity, for constructing kernel density estimates.