14 resultados para Stepped-frequency Radar
em CentAUR: Central Archive University of Reading - UK
Resumo:
Radar has been applied to the study of insect migration for almost 40 years, but most entomological radars operate at X-band (9.4 GHz, 3.2 cm wavelength), and can only detect individuals of relatively large species, such as migratory grasshoppers and noctuid moths, over all of their flight altitudes. Many insects (including economically important species) are much smaller than this, but development of the requisite higher power and/or higher frequency radar systems to detect these species is often prohibitively expensive. In this paper, attention is focussed upon the uses of some recently-deployed meteorological sensing devices to investigate insect migratory flight behaviour, and especially its interactions with boundary layer processes. Records were examined from the vertically-pointing 35 GHz ‘Copernicus’ and 94 GHz ‘Galileo’ cloud radars at Chilbolton (Hampshire, England) for 12 cloudless and convective occasions in summer 2003, and one of these occasions (13 July) is presented in detail. Insects were frequently found at heights above aerosol particles, which represent passive tracers, indicating active insect movement. It was found that insect flight above the convective boundary layer occurs most often during the morning. The maximum radar reflectivity (an indicator of aerial insect biomass) was found to be positively correlated with maximum screen temperature.
Resumo:
We propose a mechanism to explain suggested links between seismic activity and ionospheric changes detected overhead. Specifically, we explain changes in the natural extremely low-frequency (ELF) radio noise recently observed in the topside ionosphere aboard the DEMETER satellite at night, before major earthquakes. Our mechanism utilises increased electrical conductivity of surface layer air before a major earthquake, which reduces the surface-ionosphere electrical resistance. This increases the vertical fair weather current, and (to maintain continuity of electron flow) lowers the ionosphere. Magnitudes of crucial parameters are estimated and found to be consistent with observations. Natural variability in ionospheric and atmospheric electrical properties is evaluated, and may be overcome using a hybrid detection approach. Suggested experiments to investigate the mechanism involve measuring the cut-off frequency of ELF “tweeks”, the amplitude and phase of very low frequency radio waves in the Earth–ionosphere waveguide, or medium frequency radar, incoherent scatter or rocket studies of the lower ionospheric electron density.
Resumo:
We present a new method to determine mesospheric electron densities from partially reflected medium frequency radar pulses. The technique uses an optimal estimation inverse method and retrieves both an electron density profile and a gradient electron density profile. As well as accounting for the absorption of the two magnetoionic modes formed by ionospheric birefringence of each radar pulse, the forward model of the retrieval parameterises possible Fresnel scatter of each mode by fine electronic structure, phase changes of each mode due to Faraday rotation and the dependence of the amplitudes of the backscattered modes upon pulse width. Validation results indicate that known profiles can be retrieved and that χ2 tests upon retrieval parameters satisfy validity criteria. Application to measurements shows that retrieved electron density profiles are consistent with accepted ideas about seasonal variability of electron densities and their dependence upon nitric oxide production and transport.
Resumo:
Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.
Resumo:
Radar refractivity retrievals can capture near-surface humidity changes, but noisy phase changes of the ground clutter returns limit the accuracy for both klystron- and magnetron-based systems. Observations with a C-band (5.6 cm) magnetron weather radar indicate that the correction for phase changes introduced by local oscillator frequency changes leads to refractivity errors no larger than 0.25 N units: equivalent to a relative humidity change of only 0.25% at 20°C. Requested stable local oscillator (STALO) frequency changes were accurate to 0.002 ppm based on laboratory measurements. More serious are the random phase change errors introduced when targets are not at the range-gate center and there are changes in the transmitter frequency (ΔfTx) or the refractivity (ΔN). Observations at C band with a 2-μs pulse show an additional 66° of phase change noise for a ΔfTx of 190 kHz (34 ppm); this allows the effect due to ΔN to be predicted. Even at S band with klystron transmitters, significant phase change noise should occur when a large ΔN develops relative to the reference period [e.g., ~55° when ΔN = 60 for the Next Generation Weather Radar (NEXRAD) radars]. At shorter wavelengths (e.g., C and X band) and with magnetron transmitters in particular, refractivity retrievals relative to an earlier reference period are even more difficult, and operational retrievals may be restricted to changes over shorter (e.g., hourly) periods of time. Target location errors can be reduced by using a shorter pulse or identified by a new technique making alternate measurements at two closely spaced frequencies, which could even be achieved with a dual–pulse repetition frequency (PRF) operation of a magnetron transmitter.
Resumo:
In multiple-input multiple-output (MIMO) radar systems, the transmitters emit orthogonal waveforms to increase the spatial resolution. New frequency hopping (FH) codes based on chaotic sequences are proposed. The chaotic sequences have the characteristics of good encryption, anti-jamming properties and anti-intercept capabilities. The main idea of chaotic FH is based on queuing theory. According to the sensitivity to initial condition, these sequences can achieve good Hamming auto-correlation while also preserving good average correlation. Simulation results show that the proposed FH signals can achieve lower autocorrelation side lobe level and peak cross-correlation level with the increasing of iterations. Compared to the LFM signals, this sequence has higher range-doppler resolution.
Resumo:
Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces. Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude). This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is predominantly in the forward direction. A complete understanding of radiation transport modeling and data analysis methods under wide-angle multiple scattering conditions is mandatory for a correct interpretation of echoes observed by space-borne millimeter radars. This paper reviews the status of research in this field. Different numerical techniques currently implemented to account for higher order scattering are reviewed and their weaknesses and strengths highlighted. Examples of simulated radar backscattering profiles are provided with particular emphasis given to situations in which the multiple scattering contributions become comparable or overwhelm the single scattering signal. We show evidences of multiple scattering effects from air-borne and from CloudSat observations, i.e. unique signatures which cannot be explained by single scattering theory. Ideas how to identify and tackle the multiple scattering effects are discussed. Finally perspectives and suggestions for future work are outlined. This work represents a reference-guide for studies focused at modeling the radiation transport and at interpreting data from high frequency space-borne radar systems that probe highly opaque scattering media such as thick ice clouds or precipitating clouds.
Resumo:
The ability of four operational weather forecast models [ECMWF, Action de Recherche Petite Echelle Grande Echelle model (ARPEGE), Regional Atmospheric Climate Model (RACMO), and Met Office] to generate a cloud at the right location and time (the cloud frequency of occurrence) is assessed in the present paper using a two-year time series of observations collected by profiling ground-based active remote sensors (cloud radar and lidar) located at three different sites in western Europe (Cabauw. Netherlands; Chilbolton, United Kingdom; and Palaiseau, France). Particular attention is given to potential biases that may arise from instrumentation differences (especially sensitivity) from one site to another and intermittent sampling. In a second step the statistical properties of the cloud variables involved in most advanced cloud schemes of numerical weather forecast models (ice water content and cloud fraction) are characterized and compared with their counterparts in the models. The two years of observations are first considered as a whole in order to evaluate the accuracy of the statistical representation of the cloud variables in each model. It is shown that all models tend to produce too many high-level clouds, with too-high cloud fraction and ice water content. The midlevel and low-level cloud occurrence is also generally overestimated, with too-low cloud fraction but a correct ice water content. The dataset is then divided into seasons to evaluate the potential of the models to generate different cloud situations in response to different large-scale forcings. Strong variations in cloud occurrence are found in the observations from one season to the same season the following year as well as in the seasonal cycle. Overall, the model biases observed using the whole dataset are still found at seasonal scale, but the models generally manage to well reproduce the observed seasonal variations in cloud occurrence. Overall, models do not generate the same cloud fraction distributions and these distributions do not agree with the observations. Another general conclusion is that the use of continuous ground-based radar and lidar observations is definitely a powerful tool for evaluating model cloud schemes and for a responsive assessment of the benefit achieved by changing or tuning a model cloud
Resumo:
In the present paper we characterize the statistical properties of non-precipitating tropical ice clouds (deep ice anvils resulting from deep convection and cirrus clouds) over Niamey, Niger, West Africa, and Darwin, northern Australia, using ground-based radar–lidar observations from the Atmospheric Radiation Measurement (ARM) programme. The ice cloud properties analysed in this paper are the frequency of ice cloud occurrence, cloud fraction, the morphological properties (cloud-top height, base height, and thickness), the microphysical and radiative properties (ice water content, visible extinction, effective radius, terminal fall speed, and concentration), and the internal cloud dynamics (in-cloud vertical air velocity). The main highlight of the paper is that it characterizes for the first time the probability density functions of the tropical ice cloud properties, their vertical variability and their diurnal variability at the same time. This is particularly important over West Africa, since the ARM deployment in Niamey provides the first vertically resolved observations of non-precipitating ice clouds in this crucial area in terms of redistribution of water and energy in the troposphere. The comparison between the two sites also provides an additional observational basis for the evaluation of the parametrization of clouds in large-scale models, which should be able to reproduce both the statistical properties at each site and the differences between the two sites. The frequency of ice cloud occurrence is found to be much larger over Darwin when compared to Niamey, and with a much larger diurnal variability, which is well correlated with the diurnal cycle of deep convective activity. The diurnal cycle of the ice cloud occurrence over Niamey is also much less correlated with that of deep convective activity than over Darwin, probably owing to the fact that Niamey is further away from the deep convective sources of the region. The frequency distributions of cloud fraction are strongly bimodal and broadly similar over the two sites, with a predominance of clouds characterized either by a very small cloud fraction (less than 0.3) or a very large cloud fraction (larger than 0.9). The ice clouds over Darwin are also much thicker (by 1 km or more statistically) and are characterized by a much larger diurnal variability than ice clouds over Niamey. Ice clouds over Niamey are also characterized by smaller particle sizes and fall speeds but in much larger concentrations, thereby carrying more ice water and producing more visible extinction than the ice clouds over Darwin. It is also found that there is a much larger occurrence of downward in-cloud air motions less than 1 m s−1 over Darwin, which together with the larger fall speeds retrieved over Darwin indicates that the life cycle of ice clouds is probably shorter over Darwin than over Niamey.
Resumo:
The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of this paper to characterize the variability of the statistical properties of tropical ice clouds in different tropical "regimes" recently identified in the literature to aid the development of better process-oriented parameterizations in models. For this purpose, the statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The vertical variability of ice cloud occurrence and microphysical properties is largest in all regimes (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98 % of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). In the ice part of the troposphere three distinct layers characterized by different statistically-dominant microphysical processes are identified. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is large, producing mean differences of up to a factor 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes and mean differences of a factor 2 typically in all microphysical properties. Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (weak diurnal amplitude) to values in excess of 2.0 (very large diurnal amplitude). Modellers should now use these results to check if their model cloud parameterizations are capable of translating a given atmospheric forcing into the correct statistical ice cloud properties.
Resumo:
The SuperDARN chain of oblique HF radars has provided an opportunity to generate a unique climatology of horizontal winds near the mesopause at a number of high latitude locations, via the Doppler shifted echoes from sources of ionisation in the D-region. Ablating meteor trails form the bulk of these targets, but other phenomena also contribute to the observations. Due to the poor vertical resolution of the radars, care must be taken to reduce possible biases from sporadic-E layers and Polar Mesospheric Summer echoes that can affect the effective altitude of the geophysical parameters being observed. Second, there is strong theoretical and observational evidence to suggest that the radars are picking up echoes from the backward looking direction that will tend to reduce the measured wind strengths. The effect is strongly frequency dependent, resulting in a 20% reduction at 12 MHz and a 50% reduction at 10 MHz. A comparison of the climatologies observed by the Super-DARN Finland radar between September 1999 and September 2000 and that obtained from the adjacent VHF meteor radar located at Kiruna is also presented. The agreement between the two instruments was very good. Extending the analysis to the SuperDARN Iceland East radar indicated that the principles outlined above could be applied successfully to the rest of the SuperDARN network.
Resumo:
Radar refractivity retrievals have the potential to accurately capture near-surface humidity fields from the phase change of ground clutter returns. In practice, phase changes are very noisy and the required smoothing will diminish large radial phase change gradients, leading to severe underestimates of large refractivity changes (ΔN). To mitigate this, the mean refractivity change over the field (ΔNfield) must be subtracted prior to smoothing. However, both observations and simulations indicate that highly correlated returns (e.g., when single targets straddle neighboring gates) result in underestimates of ΔNfield when pulse-pair processing is used. This may contribute to reported differences of up to 30 N units between surface observations and retrievals. This effect can be avoided if ΔNfield is estimated using a linear least squares fit to azimuthally averaged phase changes. Nevertheless, subsequent smoothing of the phase changes will still tend to diminish the all-important spatial perturbations in retrieved refractivity relative to ΔNfield; an iterative estimation approach may be required. The uncertainty in the target location within the range gate leads to additional phase noise proportional to ΔN, pulse length, and radar frequency. The use of short pulse lengths is recommended, not only to reduce this noise but to increase both the maximum detectable refractivity change and the number of suitable targets. Retrievals of refractivity fields must allow for large ΔN relative to an earlier reference field. This should be achievable for short pulses at S band, but phase noise due to target motion may prevent this at C band, while at X band even the retrieval of ΔN over shorter periods may at times be impossible.
Resumo:
The equations of Milsom are evaluated, giving the ground range and group delay of radio waves propagated via the horizontally stratified model ionosphere proposed by Bradley and Dudeney. Expressions for the ground range which allow for the effects of the underlying E- and F1-regions are used to evaluate the basic maximum usable frequency or M-factors for single F-layer hops. An algorithm for the rapid calculation of the M-factor at a given range is developed, and shown to be accurate to within 5%. The results reveal that the M(3000)F2-factor scaled from vertical-incidence ionograms using the standard URSI procedure can be up to 7.5% in error. A simple addition to the algorithm effects a correction to ionogram values to make these accurate to 0.5%.