19 resultados para Steering-gear
em CentAUR: Central Archive University of Reading - UK
Resumo:
The motion of a car is described using a stochastic model in which the driving processes are the steering angle and the tangential acceleration. The model incorporates exactly the kinematic constraint that the wheels do not slip sideways. Two filters based on this model have been implemented, namely the standard EKF, and a new filter (the CUF) in which the expectation and the covariance of the system state are propagated accurately. Experiments show that i) the CUF is better than the EKF at predicting future positions of the car; and ii) the filter outputs can be used to control the measurement process, leading to improved ability to recover from errors in predictive tracking.
Resumo:
The contribution of retinal flow (RF), extraretinal (ER), and egocentric visual direction (VD) information in locomotor control was explored. First, the recovery of heading from RF was examined when ER information was manipulated; results confirmed that ER signals affect heading judgments. Then the task was translated to steering curved paths, and the availability and veracity of VD were manipulated with either degraded or systematically biased RE Large steering errors resulted from selective manipulation of RF and VD, providing strong evidence for the combination of RF, ER, and VD. The relative weighting applied to RF and VD was estimated. A point-attractor model is proposed that combines redundant sources of information for robust locomotor control with flexible trajectory planning through active gaze.
Resumo:
Visual control of locomotion is essential for most mammals and requires coordination between perceptual processes and action systems. Previous research on the neural systems engaged by self-motion has focused on heading perception, which is only one perceptual subcomponent. For effective steering, it is necessary to perceive an appropriate future path and then bring about the required change to heading. Using function magnetic resonance imaging in humans, we reveal a role for the parietal eye fields (PEFs) in directing spatially selective processes relating to future path information. A parietal area close to PEFs appears to be specialized for processing the future path information itself. Furthermore, a separate parietal area responds to visual position error signals, which occur when steering adjustments are imprecise. A network of three areas, the cerebellum, the supplementary eye fields, and dorsal premotor cortex, was found to be involved in generating appropriate motor responses for steering adjustments. This may reflect the demands of integrating visual inputs with the output response for the control device.
Resumo:
This paper argues for the relevance of paying attention to structuring participation processes across scales as one of the ways in which participation of multi-organisational partnerships that involve conflicting interests might be managed. Issue wise the paper deals with problems in connection with land mobilisation for road widening in complex and concentrated high value urban settings. It discusses a case study of plan implementation involving individual landowners, the land development market, the local government, other governmental and non-governmental organisations and the state government, which together achieved objectives that seemed impossible at first sight. In theoretical terms, the paper engages with Jessop's (2001) Strategic-Relational Approach (SRA), arguing for its potential for informing action in a way that is capable of achieving steering outputs. The claim for SRA is demonstrated by re-examining the case study. The factors that come through as SRA is applied are drawn out and it is suggested that the theory though non-deterministic, helps guide action by highlighting certain dynamics of systems that can be used for institutional intervention. These dynamics point to the importance of paying attention to scale and the way in which participation and negotiation processes are structured so as to favour certain outcomes rather than others
Resumo:
Relating system dynamics to the broad systems movement, the key notion is that reinforcing loops deserve no less attention than balancing loops. Three specific propositions follow. First, since reinforcing loops arise in surprising places, investigations of complex systems must consider their possible existence and potential impact. Second, because the strength of reinforcing loops can be misinferred - we include an example from the field of servomechanisms - computer simulation can be essential. Be it project management, corporate growth or inventory oscillation, simulation helps to assess consequences of reinforcing loops and options for interventions. Third, in social systems the consequences of reinforcing loops are not inevitable. Examples concerning globalization illustrate how difficult it might be to challenge such assumptions. However, system dynamics and ideas from contemporary social theory help to show that even the most complex social systems are, in principle, subject to human influence. In conclusion, by employing these ideas, by attending to reinforcing as well as balancing loops, system dynamics work can improve the understanding of social systems and illuminate our choices when attempting to steer them.
Resumo:
Baroclinic instability of perturbations described by the linearized primitive quations, growing on steady zonal jets on the sphere, can be understood in terms of the interaction of pairs of counter-propagating Rossby waves (CRWs). The CRWs can be viewed as the basic components of the dynamical system where the Hamiltonian is the pseudoenergy and each CRW has a zonal coordinate and pseudomomentum. The theory holds for adiabatic frictionless flow to the extent that truncated forms of pseudomomentum and pseudoenergy are globally conserved. These forms focus attention on Rossby wave activity. Normal mode (NM) dispersion relations for realistic jets are explained in terms of the two CRWs associated with each unstable NM pair. Although derived from the NMs, CRWs have the conceptual advantage that their structure is zonally untilted, and can be anticipated given only the basic state. Moreover, their zonal propagation, phase-locking and mutual interaction can all be understood by ‘PV-thinking’ applied at only two ‘home-bases’—potential vorticity (PV) anomalies at one home-base induce circulation anomalies, both locally and at the other home-base, which in turn can advect the PV gradient and modify PV anomalies there. At short wavelengths the upper CRW is focused in the mid-troposphere just above the steering level of the NM, but at longer wavelengths the upper CRW has a second wave-activity maximum at the tropopause. In the absence of meridional shear, CRW behaviour is very similar to that of Charney modes, while shear results in a meridional slant with height of the air-parcel displacement-structures of CRWs in sympathy with basic-state zonal angular-velocity surfaces. A consequence of this slant is that baroclinically growing eddies (on jets broader than the Rossby radius) must tilt downshear in the horizontal, giving rise to up-gradient momentum fluxes that tend to accelerate the barotropic component of the jet.
Resumo:
A driver controls a car by turning the steering wheel or by pressing on the accelerator or the brake. These actions are modelled by Gaussian processes, leading to a stochastic model for the motion of the car. The stochastic model is the basis of a new filter for tracking and predicting the motion of the car, using measurements obtained by fitting a rigid 3D model to a monocular sequence of video images. Experiments show that the filter easily outperforms traditional filters.
Resumo:
The theory of harmonic force constant refinement calculations is reviewed, and a general-purpose program for force constant and normal coordinate calculations is described. The program, called ASYM20. is available through Quantum Chemistry Program Exchange. It will work on molecules of any symmetry containing up to 20 atoms and will produce results on a series of isotopomers as desired. The vibrational secular equations are solved in either nonredundant valence internal coordinates or symmetry coordinates. As well as calculating the (harmonic) vibrational wavenumbers and normal coordinates, the program will calculate centrifugal distortion constants, Coriolis zeta constants, harmonic contributions to the α′s. root-mean-square amplitudes of vibration, and other quantities related to gas electron-diffraction studies and thermodynamic properties. The program will work in either a predict mode, in which it calculates results from an input force field, or in a refine mode, in which it refines an input force field by least squares to fit observed data on the quantities mentioned above. Predicate values of the force constants may be included in the data set for a least-squares refinement. The program is written in FORTRAN for use on a PC or a mainframe computer. Operation is mainly controlled by steering indices in the input data file, but some interactive control is also implemented.
Resumo:
Objective - Platelet stimulation by collagen and collagen-related peptides (CRPs) is associated with activation of protein tyrosine kinases. In the present study, we investigated the role of Src family tyrosine kinases in the initial adhesion events of human platelets to collagen and cross-linked CRP. Methods and Results - Under arterial flow conditions, a glycoprotein VI - specific substrate, cross-linked CRP, caused rapid (<2 second) platelet retention and protein tyrosine phosphorylation that were markedly decreased by the Src family kinase inhibitor pyrozolopyrimidine (PP2) or by aggregation inhibitor GRGDSP. CRP-induced platelet retention was transient, and 90% of single platelets or aggregates detached within seconds. PP2, although having no effect on RGD peptide-binding to CRP, completely blocked aggregation and tyrosine phosphorylation of Syk and phospholipase Cγ2 (PLCγ2). In contrast, PP2 weakly (<30%) suppressed firm adhesion to collagen mediated primarily by the alpha(2)beta(1) integrin. Although PP2 prevented activation of Syk and PLCgamma2 in collagen-adherent platelets, tyrosine phosphorylation of several unidentified protein bands persisted, as did autophosphorylation of pp125(FAK). Conclusions - These findings indicate that activation of Src-tyrosine kinases Syk and PLCgamma2 is not required for the initial stable attachment of human platelets to collagen and for FAK autophosphorylation. However, Src-tyrosine kinases are critical for glycoprotein VI - mediated signaling leading to platelet aggregation.
Resumo:
To steer a course through the world, people are almost entirely dependent on visual information, of which a key component is optic flow. In many models of locomotion, heading is described as the fundamental control variable; however, it has also been shown that fixating points along or near one's future path could be the basis of an efficient control solution. Here, the authors aim to establish how well observers can pinpoint instantaneous heading and path, by measuring their accuracy when looking at these features while traveling along straight and curved paths. The results showed that observers could identify both heading and path accurately (similar to 3 degrees) when traveling along straight paths, but on curved paths they were more accurate at identifying a point on their future path (similar to 5 degrees) than indicating their instantaneous heading (similar to 13 degrees). Furthermore, whereas participants could track changes in the tightness of their path, they were unable to accurately track the rate of change of heading. In light of these results, the authors suggest it is unlikely that heading is primarily used by the visual system to support active steering.
Resumo:
During locomotion, retinal flow, gaze angle, and vestibular information can contribute to one's perception of self-motion. Their respective roles were investigated during active steering: Retinal flow and gaze angle were biased by altering the visual information during computer-simulated locomotion, and vestibular information was controlled through use of a motorized chair that rotated the participant around his or her vertical axis. Chair rotation was made appropriate for the steering response of the participant or made inappropriate by rotating a proportion of the veridical amount. Large steering errors resulted from selective manipulation of retinal flow and gaze angle, and the pattern of errors provided strong evidence for an additive model of combination. Vestibular information had little or no effect on steering performance, suggesting that vestibular signals are not integrated with visual information for the control of steering at these speeds.
Resumo:
Eye-movements have long been considered a problem when trying to understand the visual control of locomotion. They transform the retinal image from a simple expanding pattern of moving texture elements (pure optic flow), into a complex combination of translation and rotation components (retinal flow). In this article we investigate whether there are measurable advantages to having an active free gaze, over a static gaze or tracking gaze, when steering along a winding path. We also examine patterns of free gaze behavior to determine preferred gaze strategies during active locomotion. Participants were asked to steer along a computer-simulated textured roadway with free gaze, fixed gaze, or gaze tracking the center of the roadway. Deviation of position from the center of the road was recorded along with their point of gaze. It was found that visually tracking the middle of the road produced smaller steering errors than for fixed gaze. Participants performed best at the steering task when allowed to sample naturally from the road ahead with free gaze. There was some variation in the gaze strategies used, but sampling was predominantly of areas proximal to the center of the road. These results diverge from traditional models of flow analysis.