9 resultados para Steam power-plants
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper examines the life cycle GHG emissions from existing UK pulverized coal power plants. The life cycle of the electricity Generation plant includes construction, operation and decommissioning. The operation phase is extended to upstream and downstream processes. Upstream processes include the mining and transport of coal including methane leakage and the production and transport of limestone and ammonia, which are necessary for flue gas clean up. Downstream processes, on the other hand, include waste disposal and the recovery of land used for surface mining. The methodology used is material based process analysis that allows calculation of the total emissions for each process involved. A simple model for predicting the energy and material requirements of the power plant is developed. Preliminary calculations reveal that for a typical UK coal fired plant, the life cycle emissions amount to 990 g CO2-e/kWh of electricity generated, which compares well with previous UK studies. The majority of these emissions result from direct fuel combustion (882 g/kWh 89%) with methane leakage from mining operations accounting for 60% of indirect emissions. In total, mining operations (including methane leakage) account for 67.4% of indirect emissions, while limestone and other material production and transport account for 31.5%. The methodology developed is also applied to a typical IGCC power plant. It is found that IGCC life cycle emissions are 15% less than those from PC power plants. Furthermore, upon investigating the influence of power plant parameters on life cycle emissions, it is determined that, while the effect of changing the load factor is negligible, increasing efficiency from 35% to 38% can reduce emissions by 7.6%. The current study is funded by the UK National Environment Research Council (NERC) and is undertaken as part of the UK Carbon Capture and Storage Consortium (UKCCSC). Future work will investigate the life cycle emissions from other power generation technologies with and without carbon capture and storage. The current paper reveals that it might be possible that, when CCS is employed. the emissions during generation decrease to a level where the emissions from upstream processes (i.e. coal production and transport) become dominant, and so, the life cycle efficiency of the CCS system can be significantly reduced. The location of coal, coal composition and mining method are important in determining the overall impacts. In addition to studying the net emissions from CCS systems, future work will also investigate the feasibility and technoeconomics of these systems as a means of carbon abatement.
Resumo:
The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO2 capture is employed, the increase in other air pollutants such as NOx and NH3 leads to higher eutrophication and acidification potentials.
Resumo:
The paper presents the techno-economic modelling of CO2 capture process in coal-fired power plants. An overall model is being developed to compare carbon capture and sequestration options at locations within the UK, and for studies of the sensitivity of the cost of disposal to changes in the major parameters of the most promising solutions identified. Technological options of CO2 capture have been studied and cost estimation relationships (CERs) for the chosen options calculated. Created models are related to the capital, operation and maintenance cost. A total annualised cost of plant electricity output and amount of CO2 avoided have been developed. The influence of interest rates and plant life has been analysed as well. The CERs are included as an integral part of the overall model.
Resumo:
The peak congestion of the European grid may create significant impacts on system costs because of the need for higher marginal cost generation, higher cost system balancing and increasing grid reinforcement investment. The use of time of use rates, incentives, real time pricing and other programmes, usually defined as Demand Side Management (DSM), could bring about significant reductions in prices, limit carbon emissions from dirty power plants, and improve the integration of renewable sources of energy. Unlike previous studies on elasticity of residential electricity demand under flat tariffs, the aim of this study is not to investigate the known relatively inelastic relationship between demand and prices. Rather, the aim is to assess how occupancy levels vary in different European countries. This reflects the reality of demand loads, which are predominantly determined by the timing of human activities (e.g. travelling to work, taking children to school) rather than prices. To this end, two types of occupancy elasticity are estimated: baseline occupancy elasticity and peak occupancy elasticity. These represent the intrinsic elasticity associated with human activities of single residential end-users in 15 European countries. This study makes use of occupancy time-series data from the Harmonised European Time Use Survey database to build European occupancy curves; identify peak occupancy periods; draw time use demand curves for video and TV watching activity; and estimate national occupancy elasticity levels of single-occupant households. Findings on occupancy elasticities provide an indication of possible DSM strategies based on occupancy levels and not prices.
Resumo:
For decades regulators in the energy sector have focused on facilitating the maximisation of energy supply in order to meet demand through liberalisation and removal of market barriers. The debate on climate change has emphasised a new type of risk in the balance between energy demand and supply: excessively high energy demand brings about significantly negative environmental and economic impacts. This is because if a vast number of users is consuming electricity at the same time, energy suppliers have to activate dirty old power plants with higher greenhouse gas emissions and higher system costs. The creation of a Europe-wide electricity market requires a systematic investigation into the risk of aggregate peak demand. This paper draws on the e-Living Time-Use Survey database to assess the risk of aggregate peak residential electricity demand for European energy markets. Findings highlight in which countries and for what activities the risk of aggregate peak demand is greater. The discussion highlights which approaches energy regulators have started considering to convince users about the risks of consuming too much energy during peak times. These include ‘nudging’ approaches such as the roll-out of smart meters, incentives for shifting the timing of energy consumption, differentiated time-of-use tariffs, regulatory financial incentives and consumption data sharing at the community level.
Resumo:
Darwin studied domesticated plants and animals to try to understand the causes of variability. He observed that variation is greatest in the part of the plant most used by humans, but explanations of the causes of this variation had to await the discovery of Mendelian genetics and subsequent advances in the understanding of the structure and mode of action of genes, from the one gene, one enzyme hypothesis to the role of transcriptional regulators. Darwin credited his studies on domesticated plants and animals with demonstrating to him the power of selection. He recognized two forms of human-mediated selection, methodical and unconscious, in addition to natural selection. Selection leaves a signature in the form of reduced diversity in genes that have been the targets of selection and in 'hitch-hiking' genomic regions linked to the target genes. These so-called selective sweeps may serve now to identify genes targeted by selection in early stages of domestication and thus provide a possible guide to crop improvement in future. (C) 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161, 203-212.
Resumo:
There is controversy about whether traditional medicine can guide drug discovery, and investment in ethnobotanically led research has fluctuated. One view is that traditionally used plants are not necessarily efficacious and there are no robust methods for distinguishing the ones that are most likely to be bioactive when selecting species for further testing. Here, we reconstruct a genus-level molecular phylogeny representing the 20,000 species found in the floras of three disparate biodiversity hotspots: Nepal, New Zealand and the Cape of South Africa. Borrowing phylogenetic methods from community ecology, we reveal significant clustering of the 1,500 traditionally used species, and provide a direct measure of the relatedness of the three medicinal floras. We demonstrate shared phylogenetic patterns across the floras: related plants from these regions are used to treat medical conditions in the same therapeutic areas. This strongly suggests independent discovery of plant efficacy, an interpretation corroborated by the presence of a significantly greater proportion of known bioactive species in these plant groups than in a random sample. Phylogenetic cross-cultural comparison can focus screening efforts on a subset of traditionally used plants that are richer in bioactive compounds, and could revitalise the use of traditional knowledge in bioprospecting.
Resumo:
Thermal generation is a vital component of mature and reliable electricity markets. As the share of renewable electricity in such markets grows, so too do the challenges associated with its variability. Proposed solutions to these challenges typically focus on alternatives to primary generation, such as energy storage, demand side management, or increased interconnection. Less attention is given to the demands placed on conventional thermal generation or its potential for increased flexibility. However, for the foreseeable future, conventional plants will have to operate alongside new renewables and have an essential role in accommodating increasing supply-side variability. This paper explores the role that conventional generation has to play in managing variability through the sub-system case study of Northern Ireland, identifying the significance of specific plant characteristics for reliable system operation. Particular attention is given to the challenges of wind ramping and the need to avoid excessive wind curtailment. Potential for conflict is identified with the role for conventional plant in addressing these two challenges. Market specific strategies for using the existing fleet of generation to reduce the impact of renewable resource variability are proposed, and wider lessons from the approach taken are identified.