2 resultados para Steam engineering.
em CentAUR: Central Archive University of Reading - UK
Resumo:
AEA Technology has provided an assessment of the probability of α-mode containment failure for the Sizewell B PWR. After a preliminary review of the methodologies available it was decided to use the probabilistic approach described in the paper, based on an extension of the methodology developed by Theofanous et al. (Nucl. Sci. Eng. 97 (1987) 259–325). The input to the assessment is 12 probability distributions; the bases for the quantification of these distributions are discussed. The α-mode assessment performed for the Sizewell B PWR has demonstrated the practicality of the event-tree method with input data represented by probability distributions. The assessment itself has drawn attention to a number of topics, which may be plant and sequence dependent, and has indicated the importance of melt relocation scenarios. The α-mode failure probability following an accident that leads to core melt relocation to the lower head for the Sizewell B PWR has been assessed as a few parts in 10 000, on the basis of current information. This assessment has been the first to consider elevated pressures (6 MPa and 15 MPa) besides atmospheric pressure, but the results suggest only a modest sensitivity to system pressure.
Resumo:
Foam properties depend on the physico-chemical characteristics of the continuous phase, the method of production and process conditions employed; however the preparation of barista-style milk foams in coffee shops by injection of steam uses milk as its main ingredient which limits the control of foam properties by changing the biochemical characteristics of the continuous phase. Therefore, the control of process conditions and nozzle design are the only ways available to produce foams with diverse properties. Milk foams were produced employing different steam pressures (100-280 kPa gauge) and nozzle designs (ejector, plunging-jet and confined-jet nozzles). The foamability of milk, and the stability, bubble size and texture of the foams were investigated. Variations in steam pressure and nozzle design changed the hydrodynamic conditions during foam production, resulting in foams having a range of properties. Steam pressure influenced foam characteristics, although the net effect depended on the nozzle design used. These results suggest that, in addition to the physicochemical determinants of milk, the foam properties can also be controlled by changing the steam pressure and nozzle design.