11 resultados para Statistical Error
em CentAUR: Central Archive University of Reading - UK
Resumo:
The relative rate method has been used to measure the room-temperature rate constants for the gasphase reactions of ozone and NO3 with selected monoterpenes and cyclo-alkenes with structural similarities to monoterpenes. Measurements were carried out at 298 ! 2 K and 760 ! 10 Torr. The following rate constants (in units of 10"18 cm3 molecule"1 s"1) were obtained for the reaction with ozone: methyl cyclohexene (132 ! 17), terpinolene (1290 ! 360), ethylidene cyclohexane (223 ! 57), norbornene (860 ! 240), t-butyl isopropylidene cyclohexane (1500 ! 460), cyclopentene (543 ! 94), cyclohexene (81 ! 18), cyclooctene (451 ! 66), dicyclopentadiene (1460 ! 170) and a-pinene (107 ! 13). For the reaction with NO3 the rate constants obtained (in units of 10"12 cm3 molecule"1 s"1) were: methyl cyclohexene (7.92 ! 0.95), terpinolene (47.9 ! 4.0), ethylidene cyclohexane (4.30 ! 0.24), norbornene (0.266 ! 0.029), cyclohexene (0.540 ! 0.017), cyclooctene (0.513 ! 0.029), dicyclopentadiene (1.20 ! 0.10) and a-pinene (5.17 ! 0.62). Errors are quoted as the root mean square of the statistical error (95% con!dence) and the quoted error in the rate constant for the reference compound. Combining these results with previous studies, new recommendations for the rate constants are presented. Molecular orbital energies were calculated for each alkene and the kinetic data are discussed in terms of the deviation from the structureeactivity relationship obtained from the rate constants for a series of simple alkenes. Lifetimes with respect to key initiators of atmospheric oxidation have been calculated suggesting that the studied reactions play dominant roles in the night-time removal of these compounds from the atmosphere.
Resumo:
The Representative Soil Sampling Scheme of England and Wales has recorded information on the soil of agricultural land in England and Wales since 1969. It is a valuable source of information about the soil in the context of monitoring for sustainable agricultural development. Changes in soil nutrient status and pH were examined over the period 1971-2001. Several methods of statistical analysis were applied to data from the surveys during this period. The main focus here is on the data for 1971, 1981, 1991 and 2001. The results of examining change over time in general show that levels of potassium in the soil have increased, those of magnesium have remained fairly constant, those of phosphorus have declined and pH has changed little. Future sampling needs have been assessed in the context of monitoring, to determine the mean at a given level of confidence and tolerable error and to detect change in the mean over time at these same levels over periods of 5 and 10 years. The results of a non-hierarchical multivariate classification suggest that England and Wales could be stratified to optimize future sampling and analysis. To monitor soil quality and health more generally than for agriculture, more of the country should be sampled and a wider range of properties recorded.
Resumo:
The paper considers meta-analysis of diagnostic studies that use a continuous score for classification of study participants into healthy or diseased groups. Classification is often done on the basis of a threshold or cut-off value, which might vary between studies. Consequently, conventional meta-analysis methodology focusing solely on separate analysis of sensitivity and specificity might be confounded by a potentially unknown variation of the cut-off value. To cope with this phenomena it is suggested to use, instead, an overall estimate of the misclassification error previously suggested and used as Youden’s index and; furthermore, it is argued that this index is less prone to between-study variation of cut-off values. A simple Mantel–Haenszel estimator as a summary measure of the overall misclassification error is suggested, which adjusts for a potential study effect. The measure of the misclassification error based on Youden’s index is advantageous in that it easily allows an extension to a likelihood approach, which is then able to cope with unobserved heterogeneity via a nonparametric mixture model. All methods are illustrated at hand of an example on a diagnostic meta-analysis on duplex doppler ultrasound, with angiography as the standard for stroke prevention.
Resumo:
The paper considers meta-analysis of diagnostic studies that use a continuous Score for classification of study participants into healthy, or diseased groups. Classification is often done on the basis of a threshold or cut-off value, which might vary between Studies. Consequently, conventional meta-analysis methodology focusing solely on separate analysis of sensitivity and specificity might he confounded by a potentially unknown variation of the cut-off Value. To cope with this phenomena it is suggested to use, instead an overall estimate of the misclassification error previously suggested and used as Youden's index and; furthermore, it is argued that this index is less prone to between-study variation of cut-off values. A simple Mantel-Haenszel estimator as a summary measure of the overall misclassification error is suggested, which adjusts for a potential study effect. The measure of the misclassification error based on Youden's index is advantageous in that it easily allows an extension to a likelihood approach, which is then able to cope with unobserved heterogeneity via a nonparametric mixture model. All methods are illustrated at hand of an example on a diagnostic meta-analysis on duplex doppler ultrasound, with angiography as the standard for stroke prevention.
Resumo:
We investigate the initialization of Northern-hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates significantly reduces assimilation error both in identical-twin experiments and when assimilating sea-ice observations, reducing the concentration error by a factor of four to six, and the thickness error by a factor of two. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that the strong dependence of thermodynamic ice growth on ice concentration necessitates an adjustment of mean ice thickness in the analysis update. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that proportional mean-thickness updates are superior to the other two methods considered and enable us to assimilate sea ice in a global climate model using simple Newtonian relaxation.
Resumo:
We investigate the initialisation of Northern Hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates leads to good assimilation performance for sea-ice concentration and thickness, both in identical-twin experiments and when assimilating sea-ice observations. The simulation of other Arctic surface fields in the coupled model is, however, not significantly improved by the assimilation. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that an adjustment of mean ice thickness in the analysis update is essential to arrive at plausible state estimates. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that assimilation with proportional mean-thickness updates outperforms the other two methods considered. The method described here is very simple to implement, and gives results that are sufficiently good to be used for initialising sea ice in a global climate model for seasonal to decadal predictions.
Resumo:
In order to examine metacognitive accuracy (i.e., the relationship between metacognitive judgment and memory performance), researchers often rely on by-participant analysis, where metacognitive accuracy (e.g., resolution, as measured by the gamma coefficient or signal detection measures) is computed for each participant and the computed values are entered into group-level statistical tests such as the t-test. In the current work, we argue that the by-participant analysis, regardless of the accuracy measurements used, would produce a substantial inflation of Type-1 error rates, when a random item effect is present. A mixed-effects model is proposed as a way to effectively address the issue, and our simulation studies examining Type-1 error rates indeed showed superior performance of mixed-effects model analysis as compared to the conventional by-participant analysis. We also present real data applications to illustrate further strengths of mixed-effects model analysis. Our findings imply that caution is needed when using the by-participant analysis, and recommend the mixed-effects model analysis.
Resumo:
For certain observing types, such as those that are remotely sensed, the observation errors are correlated and these correlations are state- and time-dependent. In this work, we develop a method for diagnosing and incorporating spatially correlated and time-dependent observation error in an ensemble data assimilation system. The method combines an ensemble transform Kalman filter with a method that uses statistical averages of background and analysis innovations to provide an estimate of the observation error covariance matrix. To evaluate the performance of the method, we perform identical twin experiments using the Lorenz ’96 and Kuramoto-Sivashinsky models. Using our approach, a good approximation to the true observation error covariance can be recovered in cases where the initial estimate of the error covariance is incorrect. Spatial observation error covariances where the length scale of the true covariance changes slowly in time can also be captured. We find that using the estimated correlated observation error in the assimilation improves the analysis.
Resumo:
To improve the quantity and impact of observations used in data assimilation it is necessary to take into account the full, potentially correlated, observation error statistics. A number of methods for estimating correlated observation errors exist, but a popular method is a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. The accuracy of the results it yields is unknown as the diagnostic is sensitive to the difference between the exact background and exact observation error covariances and those that are chosen for use within the assimilation. It has often been stated in the literature that the results using this diagnostic are only valid when the background and observation error correlation length scales are well separated. Here we develop new theory relating to the diagnostic. For observations on a 1D periodic domain we are able to the show the effect of changes in the assumed error statistics used in the assimilation on the estimated observation error covariance matrix. We also provide bounds for the estimated observation error variance and eigenvalues of the estimated observation error correlation matrix. We demonstrate that it is still possible to obtain useful results from the diagnostic when the background and observation error length scales are similar. In general, our results suggest that when correlated observation errors are treated as uncorrelated in the assimilation, the diagnostic will underestimate the correlation length scale. We support our theoretical results with simple illustrative examples. These results have potential use for interpreting the derived covariances estimated using an operational system.
Resumo:
With the development of convection-permitting numerical weather prediction the efficient use of high resolution observations in data assimilation is becoming increasingly important. The operational assimilation of these observations, such as Dopplerradar radial winds, is now common, though to avoid violating the assumption of un- correlated observation errors the observation density is severely reduced. To improve the quantity of observations used and the impact that they have on the forecast will require the introduction of the full, potentially correlated, error statistics. In this work, observation error statistics are calculated for the Doppler radar radial winds that are assimilated into the Met Office high resolution UK model using a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-depth study using the diagnostic to estimate both horizontal and along-beam correlated observation errors. By considering the new results obtained it is found that the Doppler radar radial wind error standard deviations are similar to those used operationally and increase as the observation height increases. Surprisingly the estimated observation error correlation length scales are longer than the operational thinning distance. They are dependent on both the height of the observation and on the distance of the observation away from the radar. Further tests show that the long correlations cannot be attributed to the use of superobservations or the background error covariance matrix used in the assimilation. The large horizontal correlation length scales are, however, in part, a result of using a simplified observation operator.
Resumo:
In recent years an increasing number of papers have employed meta-analysis to integrate effect sizes of researchers’ own series of studies within a single paper (“internal meta-analysis”). Although this approach has the obvious advantage of obtaining narrower confidence intervals, we show that it could inadvertently inflate false-positive rates if researchers are motivated to use internal meta-analysis in order to obtain a significant overall effect. Specifically, if one decides whether to stop or continue a further replication experiment depending on the significance of the results in an internal meta-analysis, false-positive rates would increase beyond the nominal level. We conducted a set of Monte-Carlo simulations to demonstrate our argument, and provided a literature review to gauge awareness and prevalence of this issue. Furthermore, we made several recommendations when using internal meta-analysis to make a judgment on statistical significance.