33 resultados para Spinal column
em CentAUR: Central Archive University of Reading - UK
Resumo:
A severe complication of spinal cord injury is loss of bladder function (neurogenic bladder), which is characterized by loss of bladder sensation and voluntary control of micturition (urination), and spontaneous hyperreflexive voiding against a closed sphincter (detrusor-sphincter dyssynergia). A sacral anterior root stimulator at low frequency can drive volitional bladder voiding, but surgical rhizotomy of the lumbosacral dorsal roots is needed to prevent spontaneous voiding and dyssynergia. However, rhizotomy is irreversible and eliminates sexual function, and the stimulator gives no information on bladder fullness. We designed a closed-loop neuroprosthetic interface that measures bladder fullness and prevents spontaneous voiding episodes without the need for dorsal rhizotomy in a rat model. To obtain bladder sensory information, we implanted teased dorsal roots (rootlets) within the rat vertebral column into microchannel electrodes, which provided signal amplification and noise suppression. As long as they were attached to the spinal cord, these rootlets survived for up to 3 months and contained axons and blood vessels. Electrophysiological recordings showed that half of the rootlets propagated action potentials, with firing frequency correlated to bladder fullness. When the bladder became full enough to initiate spontaneous voiding, high-frequency/amplitude sensory activity was detected. Voiding was abolished using a high-frequency depolarizing block to the ventral roots. A ventral root stimulator initiated bladder emptying at low frequency and prevented unwanted contraction at high frequency. These data suggest that sensory information from the dorsal root together with a ventral root stimulator could form the basis for a closed-loop bladder neuroprosthetic. Copyright © 2013, American Association for the Advancement of Science
Resumo:
We discuss and test the potential usefulness of single-column models (SCMs) for the testing of stchastic physics schemes that have been proposed for use in general circulation models (GCMs). We argue that although single column tests cannot be definitive in exposing the full behaviour of a stochastic method in the full GCM, and although there are differences between SCM testing of deterministic and stochastic methods, nonetheless SCM testing remains a useful tool. It is necessary to consider an ensemble of SCM runs produced by the stochastic method. These can be usefully compared to deterministic ensembles describing initial condition uncertainty and also to combinations of these (with structural model changes) into poor man's ensembles. The proposed methodology is demonstrated using an SCM experiment recently developed by the GCSS community, simulating the transitions between active and suppressed periods of tropical convection.
Resumo:
We discuss and test the potential usefulness of single-column models (SCMs) for the testing of stochastic physics schemes that have been proposed for use in general circulation models (GCMs). We argue that although single column tests cannot be definitive in exposing the full behaviour of a stochastic method in the full GCM, and although there are differences between SCM testing of deterministic and stochastic methods, SCM testing remains a useful tool. It is necessary to consider an ensemble of SCM runs produced by the stochastic method. These can be usefully compared to deterministic ensembles describing initial condition uncertainty and also to combinations of these (with structural model changes) into poor man's ensembles. The proposed methodology is demonstrated using an SCM experiment recently developed by the GCSS (GEWEX Cloud System Study) community, simulating transitions between active and suppressed periods of tropical convection.
Resumo:
This paper investigates phosphorus (P) transport and transformation dynamics in two contrasting sub-catchments of the River Kennel, England. Samples were collected daily under baseflow and hourly under stormflow conditions using autosamplers for 2 years and analysed for a range of determinands (full P fractionation, suspended sediment (SS), cations, pH, alkalinity, temperature and oxygen). Concentrations of SRP, SUP, PP and SS were higher in the flashy River Enborne (means of 0.186, 0.071, 0.101 and 34 mg l(-1), respectively) than the groundwater-fed River Lambourn (0.079, 0.057, 0.028 and 9 mg l(-1), respectively). A seasonal trend in the daily P dataset was evident, with lower concentrations during intermediate flows and the spring (caused by a dilution effect and macrophyte uptake) than during baseflow conditions. However, in the hourly P dataset, highest concentrations were observed during storm events in the autumn and winter (reflecting higher scour with increased capacity to entrain particles). Storm events were more significant in contributing to the total P load in the River Enborne than the River Lambourn, especially during August to October, when dry antecedent conditions were observed in the catchment. Re-suspension of P-rich sediment that accumulated within the channel during summer low flows might account for these observations. It is suggested that a P-calcite co-precipitation mechanism was operating during summer in the River Lambourn, while adsorption by metal oxyhydroxide groups was an important mechanism controlling P fractionation in the River Enborne. The influence of flow conditions and channel storage/release mechanisms on P dynamics in these two lowland rivers is assessed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study is to test the stabilisation of metals in contaminated soils via the formation of low-solubility metal phosphates. Bone apatite, in the form of commercially available bone meal, was tested as a phosphate source on a mine waste contaminated made-ground with high levels of Pb, Zn and Cd. Triplicate leaching columns were set up at bone meal to soil ratios of 1:25 and 1:10, in addition to unamended controls, and were run for 18 months. The columns were irrigated daily with a synthetic rain solution at pH of 2, 3, and 4.4. After 100 days, the leachate Pb, Zn and Cd concentrations of all amended columns were significantly reduced. For 1:10 treatments, release of these metals was suppressed throughout the trial. For 1:25 treatments, Zn and Cd concentrations in the leachates began to increase after 300 days. DTPA and water extractions showed that Pb and Cd were more strongly held in the amended soils. This study concludes that the complexity of soil processes and the small quantities of metals sequestered precluded determination of a metal immobilisation mechanism. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A one-dimensional water column model using the Mellor and Yamada level 2.5 parameterization of vertical turbulent fluxes is presented. The model equations are discretized with a mixed finite element scheme. Details of the finite element discrete equations are given and adaptive mesh refinement strategies are presented. The refinement criterion is an "a posteriori" error estimator based on stratification, shear and distance to surface. The model performances are assessed by studying the stress driven penetration of a turbulent layer into a stratified fluid. This example illustrates the ability of the presented model to follow some internal structures of the flow and paves the way for truly generalized vertical coordinates. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The role of convective processes in moistening the atmosphere during suppressed periods of the suppressed phase of a Madden-Julian oscillation is investigated in cloud-resolving model (CRM) simulations, and the impact of moistening on the subsequent evolution of convection is assessed as part of a Global Energy and Water Cycle Experiment Cloud System Study (GCSS) intercomparison project. The ability of single-column model (SCM) versions of a number of state-of-the-art climate and numerical weather prediction models to capture these convective processes is also evaluated. During the suppressed periods, the CRMs are found to simulate a maximum moistening around 3 km, which is associated with a predominance of shallow convection. All SCMs produce adequate amounts of shallow convection during the suppressed periods, comparable to that seen in CRMs, but the relatively drier SCMs have higher precipitation rates than the relatively wetter SCMs and CRMs. The relatively drier SCMs dry, rather than moisten, the lower troposphere below the melting level. During the transition periods, convective processes act to moisten the atmosphere above the level at which mean advection changes from moistening to drying, despite an overall drying effect for the column. The SCMs capture some essence of this moistening at upper levels. A gradual transition from shallow to deep convection is simulated by the CRMs and the wetter SCMs during the transition periods, but the onset of deep convection is delayed in the drier SCMs. This results in lower precipitation rates for these SCMs during the active periods, although much better agreement exists between the models at this time.
Resumo:
Lactoperoxidase (LP) was isolated from whey protein by cation-exchange using Carboxymethyl resin (CM-25C) and Sulphopropyl Toyopearl resin (SP-650C). Both batch and column procedures were employed and the adsorption capacities and extraction efficiencies were compared. The resin bed volume to whey volume ratios were 0.96:1.0 for CM-25C and ≤ 0.64:1.0 for SP-650 indicating higher adsorption capacity of SP-650 compared to CM-25C. The effluent LP activity depended on both the enzyme activity in the whey and the amount of whey loaded on the column within the saturation limits of the resin. The percentage recovery was high below the saturation point and fell off rapidly with over-saturation. While effective recovery was achieved with column extraction procedures, the recovery was poor in batch procedures. The whey-resin contact time had little impact on the enzyme adsorption. SDS PAGE and HPLC analyses were also carried out, the purity was examined and the proteins characterised in terms of molecular weights. Reversed phase HPLC provided clear distinction of the LP and lactoferrin (LF) peaks. The enzyme purity was higher in column effluents compared to batch effluents, judged on the basis of the clarity of the gel bands and the resolved peaks in HPLC chromatograms.
Resumo:
This paper presents a virtual headstick system as an alternative to the conventional passive headstick for persons with limited upper extremity function. The system is composed of a pair of kinematically dissimilar master-slave robots with the master robot being operated by the user's head. At the remote site, the end-effector of the slave robot moves as if it were at the tip of an imaginary headstick attached to the user's head. A unique feature of this system is that through force-reflection, the virtual headstick provides the user with proprioceptive information as in a conventional headstick, but with an augmentation of workspace volume and additional mechanical power. This paper describes the test-bed development, system identification, bilateral control implementation, and system performance evaluation.
Resumo:
Empirical studies using satellite data and radiosondes have shown that precipitation increases with column water vapor (CWV) in the tropics, and that this increase is much steeper above some critical CWV value. Here, eight years of 1-min-resolution microwave radiometer and optical gauge data at Nauru Island are analyzed to better understand the relationships among CWV, column liquid water (CLW), and precipitation at small time scales. CWV is found to have large autocorrelation times compared with CLW and precipitation. Before precipitation events, CWV increases on both a synoptic-scale time period and a subsequent shorter time period consistent with mesoscale convective activity; the latter period is associated with the highest CWV levels. Probabilities of precipitation increase greatly with CWV. Given initial high CWV, this increased probability of precipitation persists at least 10–12 h. Even in periods of high CWV, however, probabilities of initial precipitation in a 5-min period remain low enough that there tends to be a lag before the start of the next precipitation event. This is consistent with precipitation occurring stochastically within environments containing high CWV, with the latter being established by a combination of synoptic-scale and mesoscale forcing.
Resumo:
The vertical structure of the relationship between water vapor and precipitation is analyzed in 5 yr of radiosonde and precipitation gauge data from the Nauru Atmospheric Radiation Measurement (ARM) site. The first vertical principal component of specific humidity is very highly correlated with column water vapor (CWV) and has a maximum of both total and fractional variance captured in the lower free troposphere (around 800 hPa). Moisture profiles conditionally averaged on precipitation show a strong association between rainfall and moisture variability in the free troposphere and little boundary layer variability. A sharp pickup in precipitation occurs near a critical value of CWV, confirming satellite-based studies. A lag–lead analysis suggests it is unlikely that the increase in water vapor is just a result of the falling precipitation. To investigate mechanisms for the CWV–precipitation relationship, entraining plume buoyancy is examined in sonde data and simplified cases. For several different mixing schemes, higher CWV results in progressively greater plume buoyancies, particularly in the upper troposphere, indicating conditions favorable for deep convection. All other things being equal, higher values of lower-tropospheric humidity, via entrainment, play a major role in this buoyancy increase. A small but significant increase in subcloud layer moisture with increasing CWV also contributes to buoyancy. Entrainment coefficients inversely proportional to distance from the surface, associated with mass flux increase through a deep lower-tropospheric layer, appear promising. These yield a relatively even weighting through the lower troposphere for the contribution of environmental water vapor to midtropospheric buoyancy, explaining the association of CWV and buoyancy available for deep convection.