8 resultados para Species availability

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community composition. 2 For two grassland systems, one on a sandy soil in the Netherlands and one on a chalk soil in the United Kingdom, we investigated how individual plant species grown in monocultures changed abiotic and biotic soil conditions. Then, we determined feedback effects of these soils to plants of the same or different species. Feedback effects were analysed at the level of plant species and plant taxonomic groups (grasses vs. forbs). 3 In the sandy soils, plant species differed in their effects on soil chemical properties, in particular potassium levels, but PLFA (phospholipid fatty acid) signatures of the soil microbial community did not differ between plant species. The effects of soil chemical properties were even greater when grasses and forbs were compared, especially because potassium levels were lower in grass monocultures. 4 In the chalk soil, there were no effects of plant species on soil chemical properties, but PLFA profiles differed significantly between soils from different monocultures. PLFA profiles differed between species, rather than between grasses and forbs. 5 In the feedback experiment, all plant species in sandy soils grew less vigorously in soils conditioned by grasses than in soils conditioned by forbs. These effects correlated significantly with soil chemical properties. None of the seven plant species showed significant differences between performance in soil conditioned by the same vs. other plant species. 6 In the chalk soil, Sanguisorba minor and in particular Briza media performed best in soil collected from conspecifics, while Bromus erectus performed best in soil from heterospecifics. There was no distinctive pattern between soils collected from forb and grass monocultures, and plant performance could not be related to soil chemical properties or PLFA signatures. 7 Our study shows that mechanisms of plant-soil feedback can depend on plant species, plant taxonomic (or functional) groups and site-specific differences in abiotic and biotic soil properties. Understanding how plant species can influence their rhizosphere, and how other plant species respond to these changes, will greatly enhance our understanding of the functioning and stability of ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mediterranean region is one of the major centres of origin and diversification of cultivated plants and many crop wild relatives are found there. In addition, many native species are still widely harvested from the wild for food, medicine and other uses and some of these have potential for development as alternative crop especially in marginal zones. While there have been several recent initiatives that address the cataloguing and conservation of these species, such as the Network on Identification, Conservation and Use of Wild Plants in the Mediterranean Region (MEDUSA and the Bioversity International (IPGRI) studies on Underutilized Mediterranean Species (VMS), no comprehensive assessment has yet been made and little work undertaken on their agricultural potential. It has been confidently predicted that consequences of global change in the Mediterranean region - population movements and migrations, changes in disturbance regimes, and climate change - will be serious. One the one hand, this will affect the survival prospects of many of these underutilized species and on the other hand it will enhance their importance as the source of potential new crop germplasm. The conservation and availability of genetic diversity of both crops and underutilized species is essential if we are to be able to meet the increasing demand for food and other crops that will be adapted to the new ecoclimatic envelopes that will develop in the region as a consequence of global change. The rapid rate of climatic and other change that is expected adds urgency to the task of assessing, conserving and sustainably using this rich diversity of wild species of economic value in the region but new strategies will be need to be developed to achieve this. The Mediterranean region has the potential of becoming a major source of new crop development in the coming decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite long-standing interest in the forms and mechanisms of density dependence, these are still imperfectly understood. However, in a constant environment an increase in density must reduce per capita resource availability, which in turn leads to reduced survival, fecundity and somatic growth rate. Here we report two population experiments examining the density dependent responses under controlled conditions of an important indicator species, Chironomus riparius. The first experiment was run for 35 weeks and was started at low density with replicate populations being fed three different rations. Increased ration reduced generation time and increased population growth rate (pgr) but had no effect on survival, fecundity and female body weight in the first generation. In the second generation there was a six-fold increase in generation time, presumably due to the greatly reduced per capita resource availability as the estimated initial densities of the second generation were 300 times greater than the first. Juvenile survival to emergence, fecundity, adult body weight and pgr declined by 90%, 75%, 35% and 99%, respectively. These large between-generation effects may have obscured the effects of the threefold variation in ration, as only survival to emergence significantly increased with ration in the second generation. These results suggest that some chironomid larvae survive a reduction in resource availability by growing more slowly. In the ephemeral habitats sometimes occupied by C. riparius, the effects of population density may depend crucially on the longevity of the environment. A second experiment was therefore performed to measure pgr from six different starting densities over an eight-week period. The relationship between pgr and density was concave, viewed from above. At densities above 16 larvae per cm(2), less than 1% of the population emerged and no offspring were produced. Under the conditions of experiment 2 - an 8-week habitat lifespan carrying capacity was estimated as 8 larvae per cm(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Reductions in resource availability, associated with land-use change and agricultural intensification in the UK and Europe, have been linked with the widespread decline of many farmland bird species over recent decades. However, the underlying ecological processes which link resource availability and population trends are poorly understood. 2. We construct a spatial depletion model to investigate the relationship between the population persistence of granivorous birds within the agricultural landscape and the temporal dynamics of stubble field availability, an important source of winter food for many of those species. 3. The model is capable of accurately predicting the distribution of a given number of finches and buntings amongst patches of different stubble types in an agricultural landscape over the course of a winter and assessing the relative value of different landscapes in terms of resource availability. 4. Sensitivity analyses showed that the model is relatively robust to estimates of energetic requirements, search efficiency and handling time but that daily seed survival estimates have a strong influence on model fit. Understanding resource dynamics in agricultural landscapes is highlighted as a key area for further research. 5. There was a positive relationship between the predicted number of bird days supported by a landscape over-winter and the breeding population trend for yellowhammer Emberiza citrinella, a species for which survival has been identified as the primary driver of population dynamics, but not for linnet Carduelis cannabina, a species for which productivity has been identified as the primary driver of population dynamics. 6. Synthesis and applications. We believe this model can be used to guide the effective delivery of over-winter food resources under agri-environment schemes and to assess the impacts on granivorous birds of changing resource availability associated with novel changes in land use. This could be very important in the future as farming adapts to an increasingly dynamic trading environment, in which demands for increased agricultural production must be reconciled with objectives for environmental protection, including biodiversity conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grain legumes, such as peas (Pisum sativum L.), are known to be weak competitors against weeds when grown as the sole crop. In this study, the weed-suppression effect of pea–barley (Hordeum vulgare L.)intercropping compared to the respective sole crops was examined in organic field experiments across Western Europe (i.e., Denmark, the United Kingdom, France, Germany and Italy). Spring pea (P) and barley(B) were sown either as the sole crop, at the recommended plant density (P100 and B100, respectively), or in replacement (P50B50) or additive (P100B50)intercropping designs for three seasons (2003–2005). The weed biomass was three times higher under the pea sole crops than under both the intercrops and barley sole crops at maturity. The inclusion of joint experiments in several countries and various growing conditions showed that intercrops maintain a highly asymmetric competition over weeds, regardless of the particular weed infestation (species and productivity), the crop biomass or the soil nitrogen availability. The intercropping weed suppression was highly resilient, whereas the weed suppression in pea sole crops was lower and more variable. The pea–barley intercrops exhibited high levels of weed suppression, even with a low percentage of barley in the total biomass. Despite a reduced leaf area in the case of a low soil N availability, the barley sole crops and intercrops displayed high weed suppression, probably because of their strong competitive capability to absorb soil N. Higher soil N availabilities entailed increased leaf areas and competitive ability for light, which contributed to the overall competitive ability against weeds for all of the treatments. The contribution of the weeds in the total dry matter and soil N acquisition was higher in the pea sole crop than in the other treatments, in spite of the higher leaf areas in the pea crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to climate change predictions, water availability might change dramatically in Europe and adjacent regions. This change will undoubtedly have an adverse effect on existing tree species and affect their ability to cope with a lack or an excess of water, changes in annual precipitation patterns, soil salinity and fire disturbance. The following chapter will describe tree species and proven-ances used in European forestry practice which are the most suitable to deal with water stress, salinity and fire. Each subchapter starts with a brief description of each of the stress factors and discusses the predictions of the likelihood of their occurrence in the near future according to the climate change scenarios. Tree spe-cies and their genotypes able to cope with particular stress factor, together with indication of their use by forest managers are then introduced in greater detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insect pollination benefits over three quarters of the world's major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence, and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM) with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings on model performance and on its capacity to identify the most important predictors. The importance of the different predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We then used the species distributions from the calibrated model to predict pollination service of wild and managed pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination demand and the availability of pollinators, resulting from environmental change or policy scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.