14 resultados para Spatial Frequency
em CentAUR: Central Archive University of Reading - UK
Resumo:
As part of the European Commission (EC)'s revision of the Sewage Sludge Directive and the development of a Biowaste Directive, there was recognition of the difficulty of comparing data from Member States (MSs) because of differences in sampling and analytical procedures. The 'HORIZONTAL' initiative, funded by the EC and MSs, seeks to address these differences in approach and to produce standardised procedures in the form of CEN standards. This article is a preliminary investigation into aspects of the sampling of biosolids, composts and soils to which there is a history of biosolid application. The article provides information on the measurement uncertainty associated with sampling from heaps, large bags and pipes and soils in the landscape under a limited set of conditions, using sampling approaches in space and time and sample numbers based on procedures widely used in the relevant industries and when sampling similar materials. These preliminary results suggest that considerably more information is required before the appropriate sample design, optimum number of samples, number of samples comprising a composite, and temporal and spatial frequency of sampling might be recommended to achieve consistent results of a high level of precision and confidence. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Airborne scanning laser altimetry (LiDAR) is an important new data source for river flood modelling. LiDAR can give dense and accurate DTMs of floodplains for use as model bathymetry. Spatial resolutions of 0.5m or less are possible, with a height accuracy of 0.15m. LiDAR gives a Digital Surface Model (DSM), so vegetation removal software (e.g. TERRASCAN) must be used to obtain a DTM. An example used to illustrate the current state of the art will be the LiDAR data provided by the EA, which has been processed by their in-house software to convert the raw data to a ground DTM and separate vegetation height map. Their method distinguishes trees from buildings on the basis of object size. EA data products include the DTM with or without buildings removed, a vegetation height map, a DTM with bridges removed, etc. Most vegetation removal software ignores short vegetation less than say 1m high. We have attempted to extend vegetation height measurement to short vegetation using local height texture. Typically most of a floodplain may be covered in such vegetation. The idea is to assign friction coefficients depending on local vegetation height, so that friction is spatially varying. This obviates the need to calibrate a global floodplain friction coefficient. It’s not clear at present if the method is useful, but it’s worth testing further. The LiDAR DTM is usually determined by looking for local minima in the raw data, then interpolating between these to form a space-filling height surface. This is a low pass filtering operation, in which objects of high spatial frequency such as buildings, river embankments and walls may be incorrectly classed as vegetation. The problem is particularly acute in urban areas. A solution may be to apply pattern recognition techniques to LiDAR height data fused with other data types such as LiDAR intensity or multispectral CASI data. We are attempting to use digital map data (Mastermap structured topography data) to help to distinguish buildings from trees, and roads from areas of short vegetation. The problems involved in doing this will be discussed. A related problem of how best to merge historic river cross-section data with a LiDAR DTM will also be considered. LiDAR data may also be used to help generate a finite element mesh. In rural area we have decomposed a floodplain mesh according to taller vegetation features such as hedges and trees, so that e.g. hedge elements can be assigned higher friction coefficients than those in adjacent fields. We are attempting to extend this approach to urban area, so that the mesh is decomposed in the vicinity of buildings, roads, etc as well as trees and hedges. A dominant points algorithm is used to identify points of high curvature on a building or road, which act as initial nodes in the meshing process. A difficulty is that the resulting mesh may contain a very large number of nodes. However, the mesh generated may be useful to allow a high resolution FE model to act as a benchmark for a more practical lower resolution model. A further problem discussed will be how best to exploit data redundancy due to the high resolution of the LiDAR compared to that of a typical flood model. Problems occur if features have dimensions smaller than the model cell size e.g. for a 5m-wide embankment within a raster grid model with 15m cell size, the maximum height of the embankment locally could be assigned to each cell covering the embankment. But how could a 5m-wide ditch be represented? Again, this redundancy has been exploited to improve wetting/drying algorithms using the sub-grid-scale LiDAR heights within finite elements at the waterline.
Resumo:
We explored the dependency of the saccadic remote distractor effect (RDE) on the spatial frequency content of target and distractor Gabor patches. A robust RDE was obtained with low-medium spatial frequency distractors, regardless of the spatial frequency of the tat-get. High spatial frequency distractors interfered to a similar extent when the target was of the same spatial frequency. We developed a quantitative model based on lateral inhibition within an oculomotor decision unit. This lateral inhibition mechanism cannot account for the interaction observed between target and distractor spatial frequency, pointing to the existence of channel interactions at an earlier level. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In numerical weather prediction (NWP) data assimilation (DA) methods are used to combine available observations with numerical model estimates. This is done by minimising measures of error on both observations and model estimates with more weight given to data that can be more trusted. For any DA method an estimate of the initial forecast error covariance matrix is required. For convective scale data assimilation, however, the properties of the error covariances are not well understood. An effective way to investigate covariance properties in the presence of convection is to use an ensemble-based method for which an estimate of the error covariance is readily available at each time step. In this work, we investigate the performance of the ensemble square root filter (EnSRF) in the presence of cloud growth applied to an idealised 1D convective column model of the atmosphere. We show that the EnSRF performs well in capturing cloud growth, but the ensemble does not cope well with discontinuities introduced into the system by parameterised rain. The state estimates lose accuracy, and more importantly the ensemble is unable to capture the spread (variance) of the estimates correctly. We also find, counter-intuitively, that by reducing the spatial frequency of observations and/or the accuracy of the observations, the ensemble is able to capture the states and their variability successfully across all regimes.
Resumo:
When human observers are exposed to even slight motion signals followed by brief visual transients—stimuli containing no detectable coherent motion signals—they perceive large and salient illusory jumps. This novel effect, which we call “high phi”, challenges well-entrenched assumptions about the perception of motion, namely the minimal-motion principle and the breakdown of coherent motion perception with steps above an upper limit. Our experiments with transients such as texture randomization or contrast reversal show that the magnitude of the jump depends on spatial frequency and transient duration, but not on the speed of the inducing motion signals, and the direction of the jump depends on the duration of the inducer. Jump magnitude is robust across jump directions and different types of transient. In addition, when a texture is actually displaced by a large step beyond dmax, a breakdown of coherent motion perception is expected, but in the presence of an inducer observers again perceive coherent displacements at or just above dmax. In sum, across a large variety of stimuli, we find that when incoherent motion noise is preceded by a small bias, instead of perceiving little or no motion, as suggested by the minimal-motion principle, observers perceive jumps whose amplitude closely follows their own dmax limits.
Resumo:
The frequency of persistent atmospheric blocking events in the 40-yr ECMWF Re-Analysis (ERA-40) is compared with the blocking frequency produced by a simple first-order Markov model designed to predict the time evolution of a blocking index [defined by the meridional contrast of potential temperature on the 2-PVU surface (1 PVU ≡ 1 × 10−6 K m2 kg−1 s−1)]. With the observed spatial coherence built into the model, it is able to reproduce the main regions of blocking occurrence and the frequencies of sector blocking very well. This underlines the importance of the climatological background flow in determining the locations of high blocking occurrence as being the regions where the mean midlatitude meridional potential vorticity (PV) gradient is weak. However, when only persistent blocking episodes are considered, the model is unable to simulate the observed frequencies. It is proposed that this persistence beyond that given by a red noise model is due to the self-sustaining nature of the blocking phenomenon.
Resumo:
A cross-sectional study of serum antibody responses of cattle to tick-borne pathogens (Theileria parva, Theileria mutans, Anaplasma marginale, Babesia bigemina and Babesia bovis) was conducted on smallholder dairy farms in Tanga and Iringa Regions of Tanzania. Seroprevalence was highest for T. parva (48% in Iringa and 23% in Tanga) and B. bigemina (43% in Iringa and 27% in Tanga) and lowest for B. bovis (12% in Iringa and 6% in Tanga). We use spatial and non-spatial models, fitted using classical and Bayesian methods, to explore risk factors associated with seroprevalence. These include both fixed effects (age, grazing history and breeding status) and random effects (farm and local spatial effects). In both regions, seroprevalence for all tick-borne pathogens increased significantly with age. Animals pasture grazed in the 3 months prior to the start of the sampling period were significantly more likely to be seropositive for Theileria spp. and Babesia spp. Pasture grazed animals were more likely to be seropositive than zero-grazed animals for A. marginale, but the relationship was weaker than that observed for the other four pathogens. This study did not detect any significant differences in seroprevalence associated with other management-related variables, including the method or frequency of acaricide application. After adjusting for age, there was weak evidence of localised (< 5 km) spatial correlation in exposure to some of the tick borne diseases. However, this was small compared with the 'farm-effect', suggesting that risk factors specific to the farm were more important than those common to the local neighbourhood. Many animals were seropositive for more than one pathogen and the correlation between exposure to the different pathogens remained after adjusting for the identified risk factors. Identifying the determinants of exposure to multiple tick-borne pathogens and characterizing local variation in risk will assist in the development of more effective control strategies for smallholder dairy farms. (c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Current force feedback, haptic interface devices are generally limited to the display of low frequency, high amplitude spatial data. A typical device consists of a low impedance framework of one or more degrees-of-freedom (dof), allowing a user to explore a pre-defined workspace via an end effector such as a handle, thimble, probe or stylus. The movement of the device is then constrained using high gain positional feedback, thus reducing the apparent dof of the device and conveying the illusion of hard contact to the user. Such devices are, however, limited to a narrow bandwidth of frequencies, typically below 30Hz, and are not well suited to the display of surface properties, such as object texture. This paper details a device to augment an existing force feedback haptic display with a vibrotactile display, thus providing a means of conveying low amplitude, high frequency spatial information of object surface properties. 1. Haptics and Haptic Interfaces Haptics is the study of human touch and interaction with the external environment via touch. Information from the human sense of touch can be classified in to two categories, cutaneous and kinesthetic. Cutaneous information is provided via the mechanoreceptive nerve endings in the glabrous skin of the human hand. It is primarily a means of relaying information regarding small-scale details in the form of skin stretch, compression and vibration.
Resumo:
A common procedure for studying the effects on cognition of repetitive transcranial magnetic stimulation (rTMS) is to deliver rTMS concurrent with task performance, and to compare task performance on these trials versus on trials without rTMS. Recent evidence that TMS can have effects on neural activity that persist longer than the experimental session itself, however, raise questions about the assumption of the transient nature of rTMS that underlies many concurrent (or "online") rTMS designs. To our knowledge, there have been no studies in the cognitive domain examining whether the application of brief trains of rTMS during specific epochs of a complex task may have effects that spill over into subsequent task epochs, and perhaps into subsequent trials. We looked for possible immediate spill-over and longer-term cumulative effects of rTMS in data from two studies of visual short-term delayed recognition. In 54 subjects, 10-Hz rTMS trains were applied to five different brain regions during the 3-s delay period of a spatial task, and in a second group of 15 subjects, electroencephalography (EEG) was recorded while 10-Hz rTMS was applied to two brain areas during the 3-s delay period of both spatial and object tasks. No evidence for immediate effects was found in the comparison of the memory probe-evoked response on trials that were vs. were not preceded by delay-period rTMS. No evidence for cumulative effects was found in analyses of behavioral performance, and of EEG signal, as a function of task block. The implications of these findings, and their relation to the broader literature on acute vs. long-lasting effects of rTMS, are considered.
Resumo:
Abstract: Movements away from the natal or home territory are important to many ecological processes, including gene flow, population regulation, and disease epidemiology, yet quantitative data on these behaviors are lacking. Red foxes exhibit 2 periods of extraterritorial movements: when an individual disperses and when males search neighboring territories for extrapair copulations during the breeding season. Using radiotracking data collected at 5-min interfix intervals, we compared movement parameters, including distance moved, speed of movement, and turning angles, of dispersal and reproductive movements to those made during normal territorial movements; the instantaneous separation distances of dispersing and extraterritorial movements to the movements of resident adults; and the frequency of locations of 95%, 60%, and 30% harmonic mean isopleths of adult fox home territories to randomly generated fox movements. Foxes making reproductive movements traveled farther than when undertaking other types of movement, and dispersal movements were straighter. Reproductive and dispersal movements were faster than territorial movements and also differed in intensity of search and thoroughness. Foxes making dispersal movements avoided direct contact with territorial adults and moved through peripheral areas of territories. The converse was true for reproductive movements. Although similar in some basic characteristics, dispersal and reproductive movements are fundamentally different both behaviorally and spatially and are likely to have different ultimate purposes and contrasting effects on spatial processes such as disease transmission
Resumo:
We present a detailed case study of the characteristics of auroral forms that constitute the first ionospheric signatures of substorm expansion phase onset. Analysis of the optical frequency and along-arc (azimuthal) wave number spectra provides the strongest constraint to date on the potential mechanisms and instabilities in the near-Earth magnetosphere that accompany auroral onset and which precede poleward arc expansion and auroral breakup. We evaluate the frequency and growth rates of the auroral forms as a function of azimuthal wave number to determine whether these wave characteristics are consistent with current models of the substorm onset mechanism. We find that the frequency, spatial scales, and growth rates of the auroral forms are most consistent with the cross-field current instability or a ballooning instability, most likely triggered close to the inner edge of the ion plasma sheet. This result is supportive of a near-Earth plasma sheet initiation of the substorm expansion phase. We also present evidence that the frequency and phase characteristics of the auroral undulations may be generated via resonant processes operating along the geomagnetic field. Our observations provide the most powerful constraint to date on the ionospheric manifestation of the physical processes operating during the first few minutes around auroral substorm onset.
Resumo:
This study focuses on the analysis of winter (October-November-December-January-February-March; ONDJFM) storm events and their changes due to increased anthropogenic greenhouse gas concentrations over Europe. In order to assess uncertainties that are due to model formulation, 4 regional climate models (RCMs) with 5 high resolution experiments, and 4 global general circulation models (GCMs) are considered. Firstly, cyclone systems as synoptic scale processes in winter are investigated, as they are a principal cause of the occurrence of extreme, damage-causing wind speeds. This is achieved by use of an objective cyclone identification and tracking algorithm applied to GCMs. Secondly, changes in extreme near-surface wind speeds are analysed. Based on percentile thresholds, the studied extreme wind speed indices allow a consistent analysis over Europe that takes systematic deviations of the models into account. Relative changes in both intensity and frequency of extreme winds and their related uncertainties are assessed and related to changing patterns of extreme cyclones. A common feature of all investigated GCMs is a reduced track density over central Europe under climate change conditions, if all systems are considered. If only extreme (i.e. the strongest 5%) cyclones are taken into account, an increasing cyclone activity for western parts of central Europe is apparent; however, the climate change signal reveals a reduced spatial coherency when compared to all systems, which exposes partially contrary results. With respect to extreme wind speeds, significant positive changes in intensity and frequency are obtained over at least 3 and 20% of the European domain under study (35–72°N and 15°W–43°E), respectively. Location and extension of the affected areas (up to 60 and 50% of the domain for intensity and frequency, respectively), as well as levels of changes (up to +15 and +200% for intensity and frequency, respectively) are shown to be highly dependent on the driving GCM, whereas differences between RCMs when driven by the same GCM are relatively small.
Resumo:
Radar refractivity retrievals have the potential to accurately capture near-surface humidity fields from the phase change of ground clutter returns. In practice, phase changes are very noisy and the required smoothing will diminish large radial phase change gradients, leading to severe underestimates of large refractivity changes (ΔN). To mitigate this, the mean refractivity change over the field (ΔNfield) must be subtracted prior to smoothing. However, both observations and simulations indicate that highly correlated returns (e.g., when single targets straddle neighboring gates) result in underestimates of ΔNfield when pulse-pair processing is used. This may contribute to reported differences of up to 30 N units between surface observations and retrievals. This effect can be avoided if ΔNfield is estimated using a linear least squares fit to azimuthally averaged phase changes. Nevertheless, subsequent smoothing of the phase changes will still tend to diminish the all-important spatial perturbations in retrieved refractivity relative to ΔNfield; an iterative estimation approach may be required. The uncertainty in the target location within the range gate leads to additional phase noise proportional to ΔN, pulse length, and radar frequency. The use of short pulse lengths is recommended, not only to reduce this noise but to increase both the maximum detectable refractivity change and the number of suitable targets. Retrievals of refractivity fields must allow for large ΔN relative to an earlier reference field. This should be achievable for short pulses at S band, but phase noise due to target motion may prevent this at C band, while at X band even the retrieval of ΔN over shorter periods may at times be impossible.
Resumo:
In multiple-input multiple-output (MIMO) radar systems, the transmitters emit orthogonal waveforms to increase the spatial resolution. New frequency hopping (FH) codes based on chaotic sequences are proposed. The chaotic sequences have the characteristics of good encryption, anti-jamming properties and anti-intercept capabilities. The main idea of chaotic FH is based on queuing theory. According to the sensitivity to initial condition, these sequences can achieve good Hamming auto-correlation while also preserving good average correlation. Simulation results show that the proposed FH signals can achieve lower autocorrelation side lobe level and peak cross-correlation level with the increasing of iterations. Compared to the LFM signals, this sequence has higher range-doppler resolution.