23 resultados para Space flight to Mercury
em CentAUR: Central Archive University of Reading - UK
Resumo:
Infrared filters and coatings have been employed on many sensing radiometer instruments to measure the thermal emission profiles and concentrations of certian chemical constituents found in planetary atmospheres. The High Resolution Dynamics Limb Sounder ( HIRDLS) is an example of the most recent developments in limb-viewing radiometry by employing a cooled focal plane detector array to provide simultaneous multi-channel monitoring of emission from gas and aerosols over an altitude range between 8 - 70 km. The use of spectrally selective cooled detectors in focal plane arrays has simplified the optical layout of radiometers, greatly reducing the number of components in the optical train. this has inevitably led to increased demands for the enviromnetal durability of the focal plane filters because of the need to cut sub-millimeter sizes, whilst maintaining an optimal spectral performance. Additionally the remaining refractive optical elements require antireflection coatings which must cover the entire spectral range of the focal plane array channels, in this case 6 to 18µm, with a minimum of reflection and absorption. This paper describes the optical layout and spectral design requirements for filteriong in the HIRDLS instrument, and reports progress on the manufacturing and testing of the sub-millimetre sized cooled filters. We also report on the spectral and environmental performance of prototype wideband antireflection coatings which satisfy the requirements above.
Resumo:
This paper uses sales transaction data in order to examine whether flight from risk phenomena took place in the US office property investment market during the financial crisis of 2007-2009. The effect of the crisis on the pricing of property quality attributes, mainly summarized by the class category of each building, is investigated. In addition, the paper examines how turnover levels were affected by the market downturn and whether there were significant variations between different real estate quality types. The results of the hedonic regression models suggest that the price spread between Class, A, B and C grew significantly during the downturn. We also find that property attributes such as size, height and age are priced significantly different in ‘hot’ and ‘cold’ markets.
Resumo:
Purpose – The purpose of this paper is to investigate the effect of the crisis on the pricing of asset quality attributes. This paper uses sales transaction data to examine whether flight from risk phenomena took place in the US office market during the financial crisis of 2007-2009. Design/methodology/approach – Hedonic regression procedures are used to test the hypothesis that the spread between the pricing of low-quality and high-quality characteristics increased during the crisis period compared to the pre-crisis period. Findings – The results of the hedonic regression models suggest that the price spread between Class A and other properties grew significantly during the downturn. Research limitations/implications – Our results are consistent with the hypothesis of an increased price spread following a market downturn between Class A and non-Class A offices. The evidence suggests that the relationships between the returns on Class A and non-Class A assets changed during the period of market stress or crisis. Practical implications – These findings have implications for real estate portfolio construction. If regime switches can be predicted and/or responded to rapidly, portfolios may be rebalanced. In crisis periods, portfolios might be reweighted towards Class A properties and in positive market periods, the reweighting would be towards non-Class A assets. Social implications – The global financial crisis has demonstrated that real estate markets play a crucial role in modern economies and that negative developments in these markets have the potential to spillover and create contagion for the larger economy, thereby affecting jobs, incomes and ultimately people’s livelihoods. Originality/value – This is one of the first studies that address the flight to quality phenomenon in commercial real estate markets during periods of financial crisis and market turmoil.
Resumo:
With continually increasing demands for improvements to atmospheric and planetary remote-sensing instrumentation, for both high optical system performance and extended operational lifetimes, an investigation to access the effects of prolonged exposure of the space environment to a series of infrared interference filters and optical materials was promoted on the NASA LDEF mission. The NASA Long Duration Exposure Facility (LDEF) was launchd by the Space Shuttle to transport various science and technology experiments both to and from space, providing investigators with the opportunity to study the effects of the space environment on materials and systems used in space-flight applications. Preliminary results to be discussed consist of transmission measurements obtained and processed from an infrared spectrophotometer both before (1983) and after (1990) exposure compared with unexposed control specimens, together with results of detailed microscopic and general visual examinations performed on the experiment. The principle lead telluride (PbTe) and Zinc Sulphide (ZnS) based multilayer filters selected for this preliminary investigation consist of : an 8-12µm low pass edge filter, a 10.6µm 2.5% half bandwidth (HBW) double half-wave narrow bandpass filter, and a 10% HBW triple half-wave wide bandpass filter at 15µm. Optical substrates of MgF2 and KRS-5 (T1BrI) will also be discussed.
Resumo:
Infrared multilayer interference filters have been used extensively in satellite radiometers for about 15 years. Filters manufactured by the University of Reading have been used in Nimbus 5, 6, and 7, TIROS N, and the Pioneer Venus orbiter. The ability of the filters to withstand the space environment in these applications is critical; if degradation takes place, the effects would range from worsening of signal-to-noise performance to complete system failure. An experiment on the LDEF will enable the filters, for the first time, to be subjected to authoritative spectral measurements following space exposure to ascertain their suitability for spacecraft use and to permit an understanding of degradation mechanisms.
Resumo:
This paper examines the barriers to mitigating mercury pollution at small-scale gold mines in the Guianas (Guyana, French Guiana and Suriname), and prescribes recommendations for overcoming these obstacles. Whilst considerable attention has been paid to analysing the environmental impacts of operations in the region, minimal research has been undertaken to identify appropriate policy and educational initiatives for addressing the mounting mercury problem. Findings from recent fieldwork and selected interviews with operators from Guyanese and Surinamese gold mining regions reveal that legislative incapacity, the region's varied industry policy stances, various technological problems, and low environmental awareness on the part of communities are impeding efforts to facilitate improved mercury management at small-scale gold mines in the Guianas. Marked improvements can be achieved, however, if legislation, particularly that pertaining to mercury, is harmonised in the region; educational seminars continue to be held in important mining districts; and additional outlets for disseminating environmental equipment and mercury-free technologies are provided.
Resumo:
The High Resolution Dynamics Limb Sounder is described, with particular reference to the atmospheric measurements to be made and the rationale behind the measurement strategy. The demands this strategy places on the filters to be used in the instrument and the designs to which this leads to are described. A second set of filters at an intermediate image plane to reduce "Ghost Imaging" is discussed together with their required spectral properties. A method of combining the spectral characteristics of the primary and secondary filters in each channel are combined together with the spectral response of the detectors and other optical elements to obtain the system spectral response weighted appropriately for the Planck function and atmospheric limb absorption. This method is used to demonstrate whether the out-of-band spectral blocking requirement for a channel is being met and an example calculation is demonstrated showing how the blocking is built up for a representative channel. Finally, the techniques used to produce filters of the necessary sub-millimetre sizes together with the testing methods and procedures used to assess the environmental durability and establish space flight quality are discussed.
Resumo:
Recent paleoclimate studies provide strong evidence for an association between cosmogenic isotope production and Earth’s climate throughout the holecene. These isotopes are generated by the bombardment of Earth’s atmosphere by galactic cosmic rays, the fluxes of which vary in approximately inverse proportion to the total open magnetic flux of the Sun. This paper discusses how results from the Ulysses spacecraft allow us to quantify the open solar flux from observations of near-Earth interplanetary space and to study its long-term variations using the homogeneous record of geomagnetic activity. A study of the results and of their accuracy is presented. The two proposed mechanisms that could lead to the open solar flux being a good proxy for solar-induced climate change are discussed: the first is the modulation of the production of some types of cloud by the air ions produced by cosmic rays; the second is a variation in the total or spectral solar irradiance, in association with changes in the open flux. Some implications for our understanding of anthropogenic climate change are discussed.
Resumo:
The longwave radiative cooling of the clear-sky atmosphere (Q(LWc)) is a crucial component of the global hydrological cycle and is composed of the clear-sky outgoing longwave radiation to space (OLRc) and the net downward minus upward clear-sky longwave radiation to the surface (SNLc). Estimates of QLWc from reanalyses and observations are presented for the period 1979-2004. Compared to other reanalyses data sets, the European Centre for Medium-range Weather Forecasts 40-year reanalysis (ERA40) produces the largest Q(LWc) over the tropical oceans (217 W m(-2)), explained by the least negative SNLc. On the basis of comparisons with data derived from satellite measurements, ERA40 provides the most realistic QLWc climatology over the tropical oceans but exhibits a spurious interannual variability for column integrated water vapor (CWV) and SNLc. Interannual monthly anomalies of QLWc are broadly consistent between data sets with large increases during the warm El Nino events. Since relative humidity ( RH) errors applying throughout the troposphere result in compensating effects on the cooling to space and to the surface, they exert only a marginal effect on QLWc. An observed increase in CWV with surface temperature of 3 kg m(-2) K-1 over the tropical oceans is important in explaining a positive relationship between QLWc and surface temperature, in particular over ascending regimes; over tropical ocean descending regions this relationship ranges from 3.6 to 4.6 +/- 0.4 W m(-2) K-1 for the data sets considered, consistent with idealized sensitivity tests in which tropospheric warming is applied and RH is held constant and implying an increase in precipitation with warming.
Resumo:
Feathers are composed of a structure that, whilst being very light, is able to withstand the large aerodynamic forces exerted upon them during flight. To explore the contribution of molecular orientation to feather keratin mechanical properties, we have examined the nanoscopic organisation of the keratin molecules by X-ray diffraction techniques and have confirmed a link between this and the Young's modulus of the feather rachis. Our results indicate that along the rachis length, from calamus to tip, the keratin molecules become more aligned than at the calamus before returning to a state of higher mis-orientation towards the tip of the rachis. We have also confirmed the general trend of increasing Young's modulus with distance along the rachis. Furthermore, we report a distinct difference in the patterns of orientation of beta-keratin in the feathers of flying and flightless birds. The trend for increased modulus along the feathers of volant birds is absent in the flightless ostrich.
Resumo:
Utilising the expressive power of S-Expressions in Learning Classifier Systems often prohibitively increases the search space due to increased flexibility of the endcoding. This work shows that selection of appropriate S-Expression functions through domain knowledge improves scaling in problems, as expected. It is also known that simple alphabets perform well on relatively small sized problems in a domain, e.g. ternary alphabet in the 6, 11 and 20 bit MUX domain. Once fit ternary rules have been formed it was investigated whether higher order learning was possible and whether this staged learning facilitated selection of appropriate functions in complex alphabets, e.g. selection of S-Expression functions. This novel methodology is shown to provide compact results (135-MUX) and exhibits potential for scaling well (1034-MUX), but is only a small step towards introducing abstraction to LCS.
Resumo:
A polynomial-based ARMA model, when posed in a state-space framework can be regarded in many different ways. In this paper two particular state-space forms of the ARMA model are considered, and although both are canonical in structure they differ in respect of the mode in which disturbances are fed into the state and output equations. For both forms a solution is found to the optimal discrete-time observer problem and algebraic connections between the two optimal observers are shown. The purpose of the paper is to highlight the fact that the optimal observer obtained from the first state-space form, commonly known as the innovations form, is not that employed in an optimal controller, in the minimum-output variance sense, whereas the optimal observer obtained from the second form is. Hence the second form is a much more appropriate state-space description to use for controller design, particularly when employed in self-tuning control schemes.
Resumo:
The improvements obtained on cooling atmospheric remote-sensing instruments for space flight applications has promoted research in characterization of the necessary optical filters. By modelling the effects of temperature on the dispersive spectrum of some constituent thin film materials, the cooled performance can be simulated and compared. multilayer filter designs with the measured spectra from actual filters. Two actual filters are discussed, for the 7µm region, one a composite cut-on/cut-off design of 13% HBW and the other an integral narrowband design of 4% HBW.
Resumo:
This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.
Resumo:
The main objective is to generate kinematic models for the head and neck movements. The motivation comes from our study of individuals with quadriplegia and the need to design rehabilitation aiding devices such as robots and teletheses that can be controlled by head-neck movements. It is then necessary to develop mathematical models for the head and neck movements. Two identification methods have been applied to study the kinematics of head-neck movements of able-body as well as neck-injured subjects. In particular, sagittal plane movements are well modeled by a planar two-revolute-joint linkage. In fact, the motion in joint space seems to indicate that sagittal plane movements may be classified as a single DOF motion. Finally, a spatial three-revolute-joint system has been employed to model 3D head-neck movements.