90 resultados para Soybean proteins

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) plant cell wall glycoproteins involved in plant immunity. They are typically encoded by gene families with a small number of gene copies whose evolutionary origin has been poorly investigated. Here we report the complete characterization of the full complement of the pgip family in soybean (Glycine max [L.] Merr.) and the characterization of the genomic region surrounding the pgip family in four legume species. Results BAC clone and genome sequence analyses showed that the soybean genome contains two pgip loci. Each locus is composed of three clustered genes that are induced following infection with the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, and remnant sequences of pgip genes. The analyzed homeologous soybean genomic regions (about 126 Kb) that include the pgip loci are strongly conserved and this conservation extends also to the genomes of the legume species Phaseolus vulgaris L., Medicago truncatula Gaertn. and Cicer arietinum L., each containing a single pgip locus. Maximum likelihood-based gene trees suggest that the genes within the pgip clusters have independently undergone tandem duplication in each species. Conclusions The paleopolyploid soybean genome contains two pgip loci comprised in large and highly conserved duplicated regions, which are also conserved in bean, M. truncatula and C. arietinum. The genomic features of these legume pgip families suggest that the forces driving the evolution of pgip genes follow the birth-and-death model, similar to that proposed for the evolution of resistance (R) genes of NBS-LRR-type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soybean, an important source of vegetable oils and proteins for humans, has undergone significant phenotypic changes during domestication and improvement. However, there is limited knowledge about genes related to these domesticated and improved traits, such as flowering time, seed development, alkaline-salt tolerance, and seed oil content (SOC). In this study, more than 106,000 single nucleotide polymorphisms (SNPs) were identified by restriction site associated DNA sequencing of 14 wild, 153 landrace, and 119 bred soybean accessions, and 198 candidate domestication regions (CDRs) were identified via multiple genetic diversity analyses. Of the 1489 candidate domestication genes (CDGs) within these CDRs, a total of 330 CDGs were related to the above four traits in the domestication, gene ontology (GO) enrichment, gene expression, and pathway analyses. Eighteen, 60, 66, and 10 of the 330 CDGs were significantly associated with the above four traits, respectively. Of 134 traitassociated CDGs, 29 overlapped with previous CDGs, 11 were consistent with candidate genes in previous trait association studies, and 66 were covered by the domesticated and improved quantitative trait loci or their adjacent regions, having six common CDGs, such as one functionally characterized gene Glyma15 g17480 (GmZTL3). Of the 68 seed size (SS) and SOC CDGs, 37 were further confirmed by gene expression analysis. In addition, eight genes were found to be related to artificial selection during modern breeding. Therefore, this study provides an integrated method for efficiently identifying CDGs and valuable information for domestication and genetic research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eukaryotic nucleolus is multifunctional and involved in the metabolism and assembly of many different RNAs and ribonucleoprotein particles as well as in cellular functions, such as cell division and transcriptional silencing in plants. We previously showed that Arabidopsis thaliana exon junction complex proteins associate with the nucleolus, suggesting a role for the nucleolus in mRNA production. Here, we report that the plant nucleolus contains mRNAs, including fully spliced, aberrantly spliced, and single exon gene transcripts. Aberrant mRNAs are much more abundant in nucleolar fractions, while fully spliced products are more abundant in nucleoplasmic fractions. The majority of the aberrant transcripts contain premature termination codons and have characteristics of nonsense-mediated decay (NMD) substrates. A direct link between NMD and the nucleolus is shown by increased levels of the same aberrant transcripts in both the nucleolus and in Up-frameshift (upf) mutants impaired in NMD. In addition, the NMD factors UPF3 and UPF2 localize to the nucleolus, suggesting that the Arabidopsis nucleolus is therefore involved in identifying aberrant mRNAs and NMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binding parameters for the interactions of four types of tannins: tea catechins, grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins,and sorghum procyanidins (mDP=17), with gelatin and bovine serum albumin (BSA) have been determined from isothermal titration calorimetry data. Equilibrium binding constants determined for the interaction with gelatin were in the range 10(4) to 10(6) M-1 and in the order: sorghum procyanidins > grape seed proanthocyanidins > mimosa 5-deoxy proanthocyanidins > tea catechins. Interaction with BSA was generally weaker, with equilibrium binding constants of <= 10(3) M-1 for grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins and tea catechins, and 10(4) M-1 for the sorghum procyanidins. In all cases the interactions with proteins were exothermic and involved multiple binding sites on the protein. The data are discussed in relation to the structures and the known nutritional effects of the condensed tannins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of starter culture and fermentation period on the isoflavone content of protein-rich soybeans variety TG145. Initially, soybeans were washed, soaked in water for 16 h and autoclaved at 121°C for 40min. Three different bacterial starter cultures (~104 CFU/g) namely Bacillus subtilis BEST195, B. subtilis Asaichiban and B. subtilis TN51 were then added and the fermentation was allowed to proceed at 42°C for 24 h (natto-style) and 72 h (thua nao-style). The quantities of six major isoflavones (daidzin, genistin, glycitin, daidzein, genistein, and glycitein) were then determined in these fermented soybean products using reverse phase HPLC technique. Generally, our results clearly showed that the content of total isoflavones in the fermented products prepared by Bacillus starter cultures greatly increased ranging from 43 to 99% compared to that of the unfermented autoclaved soybeans. In addition, a dramatic increase of aglycones was also observed (> 400%) in the soybean products fermented by Bacillus subtilis strain TN51. This present study suggests a promising use of Bacillus starter cultures in improving isoflavone compounds especially the aglycones which would benefit for novel functional food development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cupin superfamily is a group of functionally diverse proteins that are found in all three kingdoms of life, Archaea, Eubacteria, and Eukaryota. These proteins have a characteristic signature domain comprising two histidine- containing motifs separated by an intermotif region of variable length. This domain consists of six beta strands within a conserved beta barrel structure. Most cupins, such as microbial phosphomannose isomerases (PMIs), AraC- type transcriptional regulators, and cereal oxalate oxidases (OXOs), contain only a single domain, whereas others, such as seed storage proteins and oxalate decarboxylases (OXDCs), are bi-cupins with two pairs of motifs. Although some cupins have known functions and have been characterized at the biochemical level, the majority are known only from gene cloning or sequencing projects. In this study, phylogenetic analyses were conducted on the conserved domain to investigate the evolution and structure/function relationships of cupins, with an emphasis on single- domain plant germin-like proteins (GLPs). An unrooted phylogeny of cupins from a wide spectrum of evolutionary lineages identified three main clusters, microbial PMIs, OXDCs, and plant GLPs. The sister group to the plant GLPs in the global analysis was then used to root a phylogeny of all available plant GLPs. The resulting phylogeny contained three main clades, classifying the GLPs into distinct subfamilies. It is suggested that these subfamilies correlate with functional categories, one of which contains the bifunctional barley germin that has both OXO and superoxide dismutase (SOD) activity. It is proposed that GLPs function primarily as SODs, enzymes that protect plants from the effects of oxidative stress. Closer inspection of the DNA sequence encoding the intermotif region in plant GLPs showed global conservation of thymine in the second codon position, a character associated with hydrophobic residues. Since many of these proteins are multimeric and enzymatically inactive in their monomeric state, this conservation of hydrophobicity is thought to be associated with the need to maintain the various monomer- monomer interactions. The type of structure-based predictive analysis presented in this paper is an important approach for understanding gene function and evolution in an era when genomes from a wide range of organisms are being sequenced at a rapid rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxalate oxidase enzyme expressed in barley roots is a thermostable, protease-resistant enzyme that generates H2O2. It has great medical importance because of its use to assay plasma and urinary oxalate, and it has also been used to generate transgenic, pathogen-resistant crops. This protein has now been purified and three types of crystals grown. X-ray analysis shows that the symmetry present in these crystals is consistent with a hexameric arrangement of subunits, probably a trimer of dimers. This structure may be similar to that found in the related seed storage proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant storage proteins comprise a major part of the human diet. Sequence analysis has revealed that these proteins probably share a common ancestor with a fungal oxalate decarboxylase and/or related bacterial genes. Additionally, all these proteins share a central core sequence with several other functionally diverse enzymes and binding proteins, many of which are associated with synthesis of the extracellular matrix during sporulation/encystment. A possible prokaryotic relative of this sequence is a bacterial protein (SASP) known to bind to DNA and thereby protect spores from extreme environmental conditions. This ability to maintain cell viability during periods of dehydration in spores and seeds may relate to absolute conservation of residues involved in structure determination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germin and germin-like proteins (GLPs) are encoded by a family of genes found in all plants. They are part of the cupin superfamily of biochemically diverse proteins, a superfamily that has a conserved tertiary structure, though with limited similarity in primary sequence. The subgroups of GLPs have different enzyme functions that include the two hydrogen peroxide-generating enzymes, oxalate oxidase (OxO) and superoxide dismutase. This review summarizes the sequence and structural details of GLPs and also discusses their evolutionary progression, particularly their amplification in gene number during the evolution of the land plants. In terms of function, the GLPs are known to be differentially expressed during specific periods of plant growth and development, a pattern of evolutionary subfunctionalization. They are also implicated in the response of plants to biotic (viruses, bacteria, mycorrhizae, fungi, insects, nematodes, and parasitic plants) and abiotic (salt, heat/cold, drought, nutrient, and metal) stress. Most detailed data come from studies of fungal pathogenesis in cereals. This involvement with the protection of plants from environmental stress of various types has led to numerous plant breeding studies that have found links between GLPs and QTLs for disease and stress resistance. In addition the OxO enzyme has considerable commercial significance, based principally on its use in the medical diagnosis of oxalate concentration in plasma and urine. Finally, this review provides information on the nutritional importance of these proteins in the human diet, as several members are known to be allergenic, a feature related to their thermal stability and evolutionary connection to the seed storage proteins, also members of the cupin superfamily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The serum peptidome may be a valuable source of diagnostic cancer biomarkers. Previous mass spectrometry (MS) studies have suggested that groups of related peptides discriminatory for different cancer types are generated ex vivo from abundant serum proteins by tumor-specific exopeptidases. We tested 2 complementary serum profiling strategies to see if similar peptides could be found that discriminate ovarian cancer from benign cases and healthy controls. METHODS: We subjected identically collected and processed serum samples from healthy volunteers and patients to automated polypeptide extraction on octadecylsilane-coated magnetic beads and separately on ZipTips before MALDI-TOF MS profiling at 2 centers. The 2 platforms were compared and case control profiling data analyzed to find altered MS peak intensities. We tested models built from training datasets for both methods for their ability to classify a blinded test set. RESULTS: Both profiling platforms had CVs of approximately 15% and could be applied for high-throughput analysis of clinical samples. The 2 methods generated overlapping peptide profiles, with some differences in peak intensity in different mass regions. In cross-validation, models from training data gave diagnostic accuracies up to 87% for discriminating malignant ovarian cancer from healthy controls and up to 81% for discriminating malignant from benign samples. Diagnostic accuracies up to 71% (malignant vs healthy) and up to 65% (malignant vs benign) were obtained when the models were validated on the blinded test set. CONCLUSIONS: For ovarian cancer, altered MALDI-TOF MS peptide profiles alone cannot be used for accurate diagnoses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

dTwo genetic constructs used to confer improved agronomic characteristics, namely herbicide tolerance (HT) in maize and soyabean and insect resistance (Bt) in maize, are considered in respect of feeding to farm livestock, animal performance and the nutritional value and safety of animal products. A review of nucleic acid (DNA) and protein digestion in farm livestock concludes that the frequency of intact transgenic DNA and proteins of GM and non-GM crops being absorbed is minimal/non existent, although there is some evidence of the presence of short fragments of rubisco DNA of non-GM soya in animal tissues. It has been established that feed processing (especially heat) prior to feeding causes significant disruption of plant DNA. Studies with ruminant and non-ruminant farm livestock offered GM feeds demonstrated that animal performance and product composition are unaffected and that there is no evidence of transgenic DNA or proteins of current GM in the products of animals consuming such feeds. On this evidence, current HT and Bt constructs represent no threat to the health of animals, or humans consuming the products of such animals. However as new GM constructs become available it will be necessary to subject these to rigorous evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A feedlot trial was conducted to determine the effect of dietary vitamin A concentration and roasted soybean (SB) inclusion on carcass characteristics, adipose tissue cellularity, and muscle fatty acid composition. Angus-crossbred steers (n = 168; 295 +/- 1.8 kg) were allotted to 24 pens (7 steers each). Four treatments, in a 2 x 2 factorial arrangement, were investigated: no supplemental vitamin A, no roasted soybeans (NANS); no vitamin A, roasted SB (20% of the diet on a DM basis; NASB); with supplemental (2,700 IU/kg) vitamin A, no roasted SB (WANS); and with supplemental vitamin A, roasted SB (WASB). Diets included high moisture corn, 5% corn silage, 10 to 20% supplement, and 20% roasted SB in the SB treatments on a DM basis. The calculated vitamin A concentration in the basal diet was < 1,300 IU/kg of DM. Blood samples (2 steers/pen) were collected for serum vitamin A determination. Steers were slaughtered after 168 d on feed. Carcass characteristics and LM composition were determined. Fatty acid composition of LM was analyzed, and adipose cellularity in the i.m. and s.c. depots was determined. No vitamin A x SB interactions were detected (P > 0.10) for cattle performance, carcass composition, or muscle fatty acid composition. Low vitamin A diets (NA) did not affect (P > 0.05) ADG, DMI, or G:F. Quality grade tended (P = 0.07) to be greater in NA steers. Marbling scores and the percentage of carcasses grading > or = Choice(-) were 10% greater for NA steers, although these trends were not significant (P = 0.11 and 0.13, respectively). Backfat thickness and yield grade were not affected (P > 0.26) by vitamin A supplementation. Composition of the LM was not affected (P > 0.15) by vitamin A or SB supplementation. Serum retinol at slaughter was 44% lower (P < 0.01) for steers fed NA than for steers supplemented with vitamin A (23.0 vs. 41.1 microg/dL). A vitamin A x SB interaction occurred (P < 0.05) for adipose cellularity in the i.m. depot; when no SB was fed, vitamin A supplementation decreased cell density and increased cell size. However, when SB was fed, vitamin A supplementation did not affect adipose cellularity. Adipose cellularity at the s.c. depot was not affected (P > 0.18) by vitamin A or SB treatments. Fatty acid profile of the LM was not affected by vitamin A (P > 0.05), but SB increased (P < 0.05) PUFA (7.88 vs. 4.30 g/100 g). It was concluded that feeding NA tended to increase marbling without affecting back-fat and yield grade. It appeared that NA induced hyperplasia in the i.m. but not in the s.c. fat depot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of specific nutrients on secretion and plasma concentrations of gut peptides (glucagon-like peptide-1((7-36)) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin-8 (CCK)) differ across species, but are not reported for cattle. Our objective was to determine acute (hours) and chronic (1 week) effects of increased abomasal supply of protein, carbohydrate, or fat to the small intestine on dry matter intake (DMI) and plasma concentrations of GLP-1, GIP, CCK, and insulin. Four mid-lactation Holstein cows were used in a 4 x 4 Latin square design experiment. Treatments were 7-day abomasal infusions of water, soybean oil (500 g/d), corn starch (1100 g/d), or casein (800 g/d). Jugular vein plasma was obtained over 7 h at the end of the first and last day of infusions. Oil infusion decreased DMI on day 7, but total metabolizable energy (ME) supply (diet plus infusate) did not differ from water infusion. Casein and starch infusion had no effect on feed DMI; thus, ME supply increased. Decreased DMI on day 7 of oil infusion was accompanied by increased plasma GLP-1 concentration, but decreased plasma CCK concentration. Increased plasma GIP concentration was associated with increased ME supply on day 7 of casein and starch infusion. Casein infusion tended to increase plasma CCK concentration on both days of sampling, and increased plasma GLP-1 and insulin concentration on day 1 of infusion. The present data indicate a sustained elevation of plasma concentration of GLP-1, but not CCK, may contribute to the reduced DMI observed in dairy cows provided supplemental fat. (C) 2008 Elsevier Inc. All rights reserved.