8 resultados para Soy protein isolate
em CentAUR: Central Archive University of Reading - UK
Resumo:
Simultaneous measurement of the effects of low soy protein concentration, pH and high pressure treatment at room temperature on solubility, emulsifying properties and rheological properties (loss modulus, G '') of soy protein isolate (SPI) were evaluated. Central composite rotatable designs (2(3)) were employed over two pH ranges (2.66-4.34 and 5.16-6.84) with SPI concentration (0.32-3.68%) and pressure (198-702 MPa) as the other independent variables. The surface responses were obtained for protein solubility, emulsifying activity index (EAI) and G ''. The samples with the highest effect on protein solubility, EAI and G '' values were evaluated, as well, by electrophoresis and free sulphydryl determination. The pH was the main factor that affected protein solubility, with solubility at a maximum at pH < 3 or pH > 6. Increasing SPI concentration and decreasing/increasing the pH away from the isoelectric point both caused a reduction in EAI. Loss modulus (G '') was found to increase with SPI concentration in both pH ranges. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Five soy proteins isolate (SPI) fractions were produced using two microfiltration membranes with different pore sizes. Fractionation was carried out on SPI produced by isoelectric precipitation of a crude protein extract. The five fractions were two retentates and two permeates from the two membranes, the fifth fraction was obtained as the retentate on the smaller-po re- sized membrane fed with the permeate from the larger-pore-sized membrane. Solubility, foaming and emulsifying properties of the collected fractionates were investigated. It was observed that in the pH range 3-8 the retentates featured superior solubility compared with permeates. There was no significant difference (p > 0.0 1) in solubility between the retentates and SPI at pH >= 6. Foaming characteristics of the fractions followed the same trend as solubility with regard to foam expansion. There was, however, no particular trend observed with regards to foam stability. Emulsions stabilised by the retentates exhibited higher values (p<0.01) of emulsion stability index (ESI) and emulsifying activity index (EAI) than those stabilised with permeates. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) profiles indicated that the fractions exhibiting high functionality in terms of solubility, foaming and emulsifying properties were also richer in 7S globulin soy protein subunits. Isoelectric focussing (IEF) profiles showed that retentates were richer in species with isoelectric points (pl) between 5.2 and 5.6 while permeates featured more prominently at pis between 4.5 and 4.8. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The aim of the present study was to find out the best growing conditions for exopolysaccharide (EPS) producing bifidobacteria, which improve their functionality in yoghurt-like products. Two Bifidobacterium strains were used in this study, Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. In the first part of the study the effect of casein hydrolysate, lactalbumin hydrolysate, whey protein concentrate and whey protein isolate, added at 1.5% w/v in skim milk, was evaluated in terms of cell growth and EPS production; skim milk supplemented with yeast extract served as the control. Among the various nitrogen sources, casein hydrolysate (CH) showed the highest cell growth and EPS production for both strains after 18 h incubation and therefore it was selected for subsequent work. Based on fermentation experiments using different levels of CH (from 0.5 to 2.5% w/v) it was deduced that 1.5% (w/v) CH resulted in the highest EPS production, yielding 102 and 285 mg L− 1 for B. infantis NCIMB 702205 and B. longum subsp. infantis CCUG 52486, respectively. The influence of temperature on growth and EPS production of both strains was further evaluated at 25, 30, 37 and 42 °C for up to 48 h in milk supplemented with 1.5% (w/v) CH. The temperature had a significant effect on growth, acidification and EPS production. The maximum growth and EPS production were recorded at 37 °C for both strains, whereas no EPS production was observed at 25 °C. Lower EPS production for both strains were observed at 42 °C, which is the common temperature used in yoghurt manufacturing compared to that at 37 °C. The results showed that the culture conditions have a clear effect on the growth, acidification and EPS production, and more specifically, that skim milk supplemented with 1.5% (w/v) CH could be used as a substrate for the growth of EPS-producing bifidobacteria, at 37 °C for 24 h, resulting in the production of a low fat yoghurt-like product with improved functionality.
Resumo:
There is evidence that consumption of fish, especially oily fish, has substantial beneficial effects on health. In particular an inverse relationship of oily fish intake to coronary heart disease incidence has been established. These beneficial effects are ascribed to fish oil components including long chain ω-3 polyunsaturated fatty acids. On the other hand it should be noted that oily fish also contains hazardous substances such as dioxins, PCBs and methylmercury. Soy consumption has been associated with potential beneficial and adverse effects. The claimed benefits include reduced risk of cardiovascular disease; osteoporosis, breast and prostate cancer whereas potential adverse effects include impaired thyroid function, disruption of sex hormone levels, changes in reproductive function and increased breast cancer risk The two cases of natural foods highlight the need to consider both risks and benefits in order to establish the net health impact associated to the consumption of specific food products. Within the Sixth Framework programme of the European Commission, the BRAFO project was funded to develop a framework that allows for the quantitative comparison of human health risks and benefits in relation to foods and food compounds. This paper describes the application of the developed framework to two natural foods, farmed salmon and soy protein. We conclude that the BRAFO methodology is highly applicable to natural foods. It will help the benefit-risk managers in selecting the appropriate dietary recommendations for the population.
Resumo:
The objective was to determine the presence or absence of transgenic and endogenous plant DNA in ruminal fluid, duodenal digesta, milk, blood, and feces, and if found, to determine fragment size. Six multiparous lactating Holstein cows fitted with ruminal and duodenal cannulas received a total mixed ration. There were two treatments (T). In T1, the concentrate contained genetically modified (GM) soybean meal (cp4epsps gene) and GM corn grain (cry1a[b] gene), whereas T2 contained the near isogenic non-GM counterparts. Polymerase chain reaction analysis was used to determine the presence or absence of DNA sequences. Primers were selected to amplify small fragments from single-copy genes (soy lectin and corn high-mobility protein and cp4epsps and cry1a[b] genes from the GM crops) and multicopy genes (bovine mitochondrial cytochrome b and rubisco). Single-copy genes were only detected in the solid phase of rumen and duodenal digesta. In contrast, fragments of the rubisco gene were detected in the majority of samples analyzed in both the liquid and solid phases of ruminal and duodenal digesta, milk, and feces, but rarely in blood. The size of the rubisco gene fragments detected decreased from 1176 bp in ruminal and duodenal digesta to 351 bp in fecal samples.
Resumo:
Background: The hypocholesterolemic effects of soy foods are well established, and it has been suggested that isoflavones are responsible for this effect. However, beneficial effects of isolated isoflavones on lipid biomarkers of cardiovascular disease risk have not yet been shown. Objective: The objective was to investigate the effects of isolated soy isoflavones on metabolic biomarkers of cardiovascular disease risk, including plasma total, HDL, and LDL cholesterol; triacylglycerols; lipoprotein(a); the percentage of small dense LDL; glucose; nonesterified fatty acids; insulin; and the homeostasis model assessment of insulin resistance. Differences with respect to single nucleotide polymorphisms in selected genes [ie, estrogen receptor a (Xbal and PvuII), estrogen receptor beta (AluI), and estrogen receptor beta(cx) (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), cholesteryl ester transfer protein (TaqIB), and leptin receptor (Gln223Arg)] and with respect to equol production were investigated. Design: Healthy postmenopausal women (n = 117) participated in a randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2: 1; 50 mg/d) or placebo cereal bars were consumed for 8 wk, with a wash-out period of 8 wk before the crossover. Results: Isoflavones did not have a significant beneficial effect on plasma concentrations of lipids, glucose, or insulin. A significant difference between the responses of HDL cholesterol to isoflavones and to placebo was found with estrogen receptor 0(cx) Tsp5091 genotype AA, but not GG or GA. Conclusions: Isoflavone supplementation, when provided in the form and dose used in this study, had no effect on lipid or other metabolic biomarkers of cardiovascular disease risk in postmenopausal women but may increase HDL cholesterol in an estrogen receptor P gene-polymorphic subgroup.
Resumo:
Background: Dietary isoflavones are thought to be cardioprotective because of their structural similarity to estrogen. The reduction of concentrations of circulating inflammatory markers by estrogen may be one of the mechanisms by which premenopausal women are protected against cardiovascular disease. Objective: Our aim was to investigate the effects of isolated soy isoflavones on inflammatory biomarkers [von Willebrand factor, intracellular adhesion molecule 1, vascular cell adhesion molecule 1 (VCAM-1), E-selectin, monocyte chemoattractant protein 1, C-reactive protein (CRP), and endothelin 1 concentrations]. Differences with respect to single-nucleotide polymorphisms in selected genes [estrogen receptor alpha (XbaI and PvuII), estrogen receptor beta [ER beta (AluI) and ER beta[cx] (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), and cholesteryl ester transfer protein (TaqIB)] and equol production were investigated. Design: One hundred seventeen healthy European postmenopausal women participated in this randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2:1;50 mg/d) or placebo cereal bars were consumed for 8 wk, with a washout period of 8 wk between the crossover. Plasma inflammatory factors were measured at 0 and 8 wk of each study arm. Results: Isoflavones improved CRP concentrations [odds ratio (95% Cl) for CRP values >1 mg/L for isoflavone compared with placebo: 0.43 (0.27, 0.69)]; no significant effects of isoflavone treatment on other plasma inflammatory markers were observed. No significant differences in the response to isoflavones were observed according to subgroups of equol production. Differences in the VCAM-1 response to isoflavones and to placebo were found with ER beta AluI genotypes. Conclusion: Isoflavones have beneficial effects on CRP concentrations, but not on other inflammatory biomarkers of cardiovascular disease risk in postmenopausal women, and may improve VCAM-1 in an ER beta gene polymorphic subgroup.
Resumo:
Background: The incidence of cardiovascular diseases increases after menopause, and soy consumption is suggested to inhibit disease development. Objective: The objective was to identify biomarkers of response to a dietary supplementation with an isoflavone extract in postmenopausal women by proteome analysis of peripheral blood mononuclear cells. Design: The study with healthy postmenopausal woman was performed in a placebo-controlled sequential design. Peripheral mononuclear blood cells were collected from 10 volunteers after 8 wk of receiving daily 2 placebo cereal bars and after a subsequent 8 wk of intervention with 2 cereal bars each providing 25 mg of isoflavones. The proteome of the cells was visualized after 2-dimensional gel electrophoresis, and peptide mass fingerprinting served to identify proteins that by the intervention displayed altered protein concentrations. Results: Twenty-nine proteins were identified that showed significantly altered expression in the mononuclear blood cells under the soy-isoflavone intervention, including a variety of proteins involved in an antiinflammatory response. Heat shock protein 70 or a lymphocyte-specific protein phosphatase and proteins that promote increased fibrinolysis, such as a-enolase, were found at increased intensities, whereas those that mediate adhesion, migration, and proliferation of vascular smooth muscle cells, such as galectin-1, were found at reduced intensities after soy extract consumption. Conclusion: Protcome analysis identified in vivo markers that respond to a dietary intervention with isoflavone-enriched soy extract in postmenopausal women. The nature of the proteins identified suggests that soy isoflavones may increase the anti inflammatory response in blood mononuclear cells that might contribute to the atherosclerosis-preventive activities of a soy-rich diet.