4 resultados para Southern Brazilian shelf
em CentAUR: Central Archive University of Reading - UK
Resumo:
Around AD 1000, the southern Brazilian highlands witnessed a convergence of phenomena: climatic change, the abrupt expansion of Araucaria forest and the appearance of large pit-houses and monumental mound and enclosure complexes, which signal fundamental socio-political and ideological change amongst southern proto-Jê (SPJ) groups. These developments raise intriguing questions regarding the relationships between people, vegetation and climate over the last 2000 years.
Resumo:
Developmental and biophysical leaf characteristics that influence post-harvest shelf life in lettuce, an important leafy crop, have been examined. The traits were studied using 60 informative F-9 recombinant inbed lines (RILs) derived from a cross between cultivated lettuce (Lactuca sativa cv. Salinas) and wild lettuce (L. serriola acc. UC96US23). Quantitative trait loci (QTLs) for shelf life co-located most closely with those for leaf biophysical properties such as plasticity, elasticity, and breakstrength, suggesting that these are appropriate targets for molecular breeding for improved shelf life. Significant correlations were found between shelf life and leaf size, leaf weight, leaf chlorophyll content, leaf stomatal index, and epidermal cell number per leaf, indicating that these pre-harvest leaf development traits confer post-harvest properties. By studying the population in two contrasting environments in northern and southern Europe, the genotype by environment interaction effects of the QTLs relevant to leaf development and shelf life were assessed. In total, 107 QTLs, distributed on all nine linkage groups, were detected from the 29 traits. Only five QTLs were common in both environments. Several areas where many QTLs co-located (hotspots) on the genome were identified, with relatively little overlap between developmental hotspots and those relating to shelf life. However, QTLs for leaf biophysical properties (breakstrength, plasticity, and elasticity) and cell area correlated well with shelf life, confirming that the ideal ideotype lettuce should have small cells with strong cell walls. The identification of QTLs for leaf development, strength, and longevity will lead to a better understanding of processability at a genetic and cellular level, and allow the improvement of salad leaf quality through marker-assisted breeding.
Resumo:
The exchange between the open ocean and sub-ice shelf cavities is important to both water mass transformations and ice shelf melting. Here we use a high-resolution (500 m) numerical model to investigate to which degree eddies produced by frontal instability at the edge of a polynya are capable of transporting dense High Salinity Shelf Water (HSSW) underneath an ice shelf. The applied surface buoyancy flux and ice shelf geometry is based on Ronne Ice Shelf in the southern Weddell Sea, an area of intense wintertime sea ice production where a flow of HSSW into the cavity has been observed. Results show that eddies are able to enter the cavity at the southwestern corner of the polynya where an anticyclonic rim current intersects the ice shelf front. The size and time scale of simulated eddies are in agreement with observations close to the Ronne Ice Front. The properties and strength of the inflow are sensitive to the prescribed total ice production, flushing the ice shelf cavity at a rate of 0.2–0.4 × 106 m3 s−1 depending on polynya size and magnitude of surface buoyancy flux. Eddy-driven HSSW transport into the cavity is reduced by about 50% if the model grid resolution is decreased to 2-5 km and eddies are not properly resolved.
Resumo:
A drag law accounting for Ekman rotation adjacent to a flat, horizontal bou ndary is proposed for use in a plume model that is written in terms of the depth-mean velocity. The drag l aw contains a variable turning angle between the mean velocity and the drag imposed by the turbulent bound ary layer. The effect of the variable turning angle in the drag law is studied for a plume of ice shelf wat er (ISW) ascending and turning beneath an Antarctic ice shelf with draft decreasing away from the groundi ng line. As the ISW plume ascends the sloping ice shelf–ocean boundary, it can melt the ice shelf, wh ich alters the buoyancy forcing driving the plume motion. Under these conditions, the typical turning ang le is of order 10° over most of the plume area for a range of drag coefficients (the minus sign arises for th e Southern Hemisphere). The rotation of the drag with respect to the mean velocity is found to be signifi cant if the drag coefficient exceeds 0.003; in this case the plume body propagates farther along and across the b ase of the ice shelf than a plume with the standard quadratic drag law with no turning angle.