11 resultados para South Atlantic magnetic anomaly

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally agreed that changing climate variability, and the associated change in climate extremes, may have a greater impact on environmentally vulnerable regions than a changing mean. This research investigates rainfall variability, rainfall extremes, and their associations with atmospheric and oceanic circulations over southern Africa, a region that is considered particularly vulnerable to extreme events because of numerous environmental, social, and economic pressures. Because rainfall variability is a function of scale, high-resolution data are needed to identify extreme events. Thus, this research uses remotely sensed rainfall data and climate model experiments at high spatial and temporal resolution, with the overall aim being to investigate the ways in which sea surface temperature (SST) anomalies influence rainfall extremes over southern Africa. Extreme rainfall identification is achieved by the high-resolution microwave/infrared rainfall algorithm dataset. This comprises satellite-derived daily rainfall from 1993 to 2002 and covers southern Africa at a spatial resolution of 0.1° latitude–longitude. Extremes are extracted and used with reanalysis data to study possible circulation anomalies associated with extreme rainfall. Anomalously cold SSTs in the central South Atlantic and warm SSTs off the coast of southwestern Africa seem to be statistically related to rainfall extremes. Further, through a number of idealized climate model experiments, it would appear that both decreasing SSTs in the central South Atlantic and increasing SSTs off the coast of southwestern Africa lead to a demonstrable increase in daily rainfall and rainfall extremes over southern Africa, via local effects such as increased convection and remote effects such as an adjustment of the Walker-type circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, a number of studies have focused on the influence of sea surface temperature (SST) on global and regional rainfall variability, with the majority of these focusing on certain ocean basins e.g. the Pacific, North Atlantic and Indian Ocean. In contrast, relatively less work has been done on the influence of the central South Atlantic, particularly in relation to rainfall over southern Africa. Previous work by the authors, using reanalysis data and general circulation model (GCM) experiments, has suggested that cold SST anomalies in the central southern Atlantic Ocean are linked to an increase in rainfall extremes across southern Africa. In this paper we present results from idealised regional climate model (RCM) experiments forced with both positive and negative SST anomalies in the southern Atlantic Ocean. These experiments reveal an unexpected response of rainfall over southern Africa. In particular it was found that SST anomalies of opposite sign can cause similar rainfall responses in the model experiments, with isolated increases in rainfall over central southern Africa as well as a large region of drying over the Mozambique Channel. The purpose of this paper is to highlight this finding and explore explanations for the behaviour of the climate model. It is suggested that the observed changes in rainfall might result from the redistribution of energy (associated with upper level changes to Rossby waves) or, of more concern, model error, and therefore the paper concludes that the results of idealised regional climate models forced with SST anomalies should be viewed cautiously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various paleoclimate records have shown that the Asian monsoon was punctuated by numerous suborbital time-scale events, and these events were coeval with those that happened in the North Atlantic. This study investigates the Asian summer monsoon responses to the Atlantic Ocean forcing by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the cold North Atlantic and warm South Atlantic induced by the weakened Atlantic thermohaline circulation (THC) due to the freshwater flux lead to significantly suppressed Asian summer monsoon. The authors analyzed the detailed processes of the Atlantic Ocean forcing on the Asian summer monsoon, and found that the atmospheric teleconnection in the eastern and central North Pacific and the atmosphere-ocean interaction in the tropical North Pacific play the most crucial role. Enhanced precipitation in the subtropical North Pacific extends the effects of Atlantic Ocean forcing from the eastern Pacific into the western Pacific, and the atmosphere-ocean interaction in the tropical Pacific and Indian Ocean intensifies the circulation and precipitation anomalies in the Pacific and East Asia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the twentieth century sea surface temperatures in the Atlantic Ocean exhibited prominent multidecadal variations. The source of such variations has yet to be rigorously established—but the question of their impact on climate can be investigated. Here we report on a set of multimodel experiments to examine the impact of patterns of warming in the North Atlantic, and cooling in the South Atlantic, derived from observations, that is characteristic of the positive phase of the Atlantic Multidecadal Oscillation (AMO). The experiments were carried out with six atmospheric General Circulation Models (including two versions of one model), and a major goal was to assess the extent to which key climate impacts are consistent between the different models. The major climate impacts are found over North and South America, with the strongest impacts over land found over the United States and northern parts of South America. These responses appear to be driven by a combination of an off-equatorial Gill response to diabatic heating over the Caribbean due to increased rainfall within the region and a Northward shift in the Inter Tropical Convergence Zone (ITCZ) due to the anomalous cross-equatorial SST gradient. The majority of the models show warmer US land temperatures and reduced Mean Sea Level Pressure during summer (JJA) in response to a warmer North Atlantic and a cooler South Atlantic, in line with observations. However the majority of models show no significant impact on US rainfall during summer. Over northern South America, all models show reduced rainfall in southern hemisphere winter (JJA), whilst in Summer (DJF) there is a generally an increase in rainfall. However, there is a large spread amongst the models in the magnitude of the rainfall anomalies over land. Away from the Americas, there are no consistent significant modelled responses. In particular there are no significant changes in the North Atlantic Oscillation (NAO) over the North Atlantic and Europe in Winter (DJF). Additionally, the observed Sahel drying signal in African rainfall is not seen in the modelled responses. Suggesting that, in contrast to some studies, the Atlantic Multidecadal Oscillation was not the primary driver of recent reductions in Sahel rainfall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is growing evidence that the interocean exchange south of Africa is an important link in the global overturning circulation of the ocean, the so‐called ocean conveyer belt. At this location, warm and salty Indian Ocean waters enter the South Atlantic and are pulled by currents that eventually reach the North Atlantic, where water cools and sinks. A major contributor to the exchange is the frequent shedding of ring eddies from the termination of the Agulhas Current south of the tip of Africa. This shedding is controlled by developments far upstream in the Indian Ocean, and variations in this ‘Agulhas Leakage’ can lead to changes in the rate and stability of the Atlantic overturning, with possible associated global climate variations [Weijer et al., 1999]. Regional climate variations in the tropical and subtropical Indian Ocean are known to affect the whole system of the Agulhas Current, including the interocean exchanges. This article reports on some of the seminal results of ongoing multinational, multidisciplinary projects that explore these issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adiabatic transit time of wave energy radiated by an Agulhas ring released in the South Atlantic Ocean to the North Atlantic Ocean is investigated in a two-layer ocean model. Of particular interest is the arrival time of baroclinic energy in the northern part of the Atlantic, because it is related to variations in the meridional overturning circulation. The influence of the Mid-Atlantic Ridge is also studied, because it allows for the conversion from barotropic to baroclinic wave energy and the generation of topographic waves. Barotropic energy from the ring is present in the northern part of the model basin within 10 days. From that time, the barotropic energy keeps rising to attain a maximum 500 days after initiation. This is independent of the presence or absence of a ridge in the model basin. Without a ridge in the model, the travel time of the baroclinic signal is 1300 days. This time is similar to the transit time of the ring from the eastern to the western coast of the model basin. In the presence of the ridge, the baroclinic signal arrives in the northern part of the model basin after approximately 10 days, which is the same time scale as that of the barotropic signal. It is apparent that the ridge can facilitate the energy conversion from barotropic to baroclinic waves and the slow baroclinic adjustment can be bypassed. The meridional overturning circulation, parameterized in two ways as either a purely barotropic or a purely baroclinic phenomenon, also responds after 1300 days. The ring temporarily increases the overturning strength. Th presence of the ridge does not alter the time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate decadal climate predictions could be used to inform adaptation actions to a changing climate. The skill of such predictions from initialised dynamical global climate models (GCMs) may be assessed by comparing with predictions from statistical models which are based solely on historical observations. This paper presents two benchmark statistical models for predicting both the radiatively forced trend and internal variability of annual mean sea surface temperatures (SSTs) on a decadal timescale based on the gridded observation data set HadISST. For both statistical models, the trend related to radiative forcing is modelled using a linear regression of SST time series at each grid box on the time series of equivalent global mean atmospheric CO2 concentration. The residual internal variability is then modelled by (1) a first-order autoregressive model (AR1) and (2) a constructed analogue model (CA). From the verification of 46 retrospective forecasts with start years from 1960 to 2005, the correlation coefficient for anomaly forecasts using trend with AR1 is greater than 0.7 over parts of extra-tropical North Atlantic, the Indian Ocean and western Pacific. This is primarily related to the prediction of the forced trend. More importantly, both CA and AR1 give skillful predictions of the internal variability of SSTs in the subpolar gyre region over the far North Atlantic for lead time of 2 to 5 years, with correlation coefficients greater than 0.5. For the subpolar gyre and parts of the South Atlantic, CA is superior to AR1 for lead time of 6 to 9 years. These statistical forecasts are also compared with ensemble mean retrospective forecasts by DePreSys, an initialised GCM. DePreSys is found to outperform the statistical models over large parts of North Atlantic for lead times of 2 to 5 years and 6 to 9 years, however trend with AR1 is generally superior to DePreSys in the North Atlantic Current region, while trend with CA is superior to DePreSys in parts of South Atlantic for lead time of 6 to 9 years. These findings encourage further development of benchmark statistical decadal prediction models, and methods to combine different predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of coupled high resolution global models (CGCMs) over South America are discussed. HiGEM1.2 and HadGEM1.2 simulations, with horizontal resolution of ~90 and 135 km, respectively, are compared. Precipitation estimations from CMAP (Climate Prediction Center—Merged Analysis of Precipitation), CPC (Climate Prediction Center) and GPCP (Global Precipitation Climatology Project) are used for validation. HiGEM1.2 and HadGEM1.2 simulated seasonal mean precipitation spatial patterns similar to the CMAP. The positioning and migration of the Intertropical Convergence Zone and of the Pacific and Atlantic subtropical highs are correctly simulated by the models. In HiGEM1.2 and HadGEM1.2, the intensity and locations of the South Atlantic Convergence Zone are in agreement with the observed dataset. The simulated annual cycles are in phase with estimations of rainfall for most of the six regions considered. An important result is that HiGEM1.2 and HadGEM1.2 eliminate a common problem of coarse resolution CGCMs, which is the simulation of a semiannual cycle of precipitation due to the semiannual solar forcing. Comparatively, the use of high resolution in HiGEM1.2 reduces the dry biases in the central part of Brazil during austral winter and spring and in most part of the year over an oceanic box in eastern Uruguay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ther mohaline exchange between the Atlantic and the Souther n Ocean is analyzed, using a dataset based on WOCE hydrographic data. It is shown that the salt and heat transports brought about by the South Atlantic subtropical gyre play an essential role in the Atlantic heat and salt budgets. It is found that on average the exported North Atlantic Deep W ater (NADW) is fresher than the retur n flows (basically composed of ther mocline and inter mediate water), indicating that the overtur ning circulation (OC) exports freshwater from the Atlantic. The sensitivity of the OC to interbasin fluxes of heat and salt is studied in a 2 D model, representing the Atlantic between 60 8 N and 30 8 S. The model is forced by mixed boundar y conditions at the sur face, and by realistic fluxes of heat and salt at its 30 8 S boundar y. The model circulation tur ns out to be ver y sensitive to net buoyancy fluxes through the sur face. Both net sur face cooling and net sur face saltening are sources of potential energy and impact positively on the circulation strength. The vertical distributions of the lateral fluxes tend to stabilize the stratification, and, as they extract potential energy from the system, tend to weaken the flow . These results imply that a change in the composition of the NADW retur n transports, whether by a change in the ratio ther mocline/inter mediate water , o r by a change in their ther mohaline characteristics, might influence the Atlantic OC considerably . It is also shown that the circulation is much more sensitive to changes in the shape of the lateral buoyancy flux than to changes in the shape of the sur face buoyancy flux, as the latter does not explicitly impact on the potential energy of the system. It is concluded that interocean fluxes of heat and salt are important for the strength and operation of the Atlantic ther mohaline circulation, and should be correctly represented in models that are used for climate sensitivity studies.