6 resultados para Source-sink

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Globally there have been a number of concerns about the development of genetically modified crops many of which relate to the implications of gene flow at various levels. In Europe these concerns have led the European Union (EU) to promote the concept of 'coexistence' to allow the freedom to plant conventional and genetically modified (GM) varieties but to minimise the presence of transgenic material within conventional crops. Should a premium for non-GM varieties emerge on the market, the presence of transgenes would generate a 'negative externality' to conventional growers. The establishment of maximum tolerance level for the adventitious presence of GM material in conventional crops produces a threshold effect in the external costs. The existing literature suggests that apart from the biological characteristics of the plant under consideration (e.g. self-pollination rates, entomophilous species, anemophilous species, etc.), gene flow at the landscape level is affected by the relative size of the source and sink populations and the spatial arrangement of the fields in the landscape. In this paper, we take genetically modified herbicide tolerant oilseed rape (GM HT OSR) as a model crop. Starting from an individual pollen dispersal function, we develop a spatially explicit numerical model in order to assess the effect of the size of the source/sink populations and the degree of spatial aggregation on the extent of gene flow into conventional OSR varieties under two alternative settings. We find that when the transgene presence in conventional produce is detected at the field level, the external cost will increase with the size of the source area and with the level of spatial disaggregation. on the other hand when the transgene presence is averaged among all conventional fields in the landscape (e.g. because of grain mixing before detection), the external cost will only depend on the relative size of the source area. The model could readily be incorporated into an economic evaluation of policies to regulate adoption of GM HT OSR. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most of the dissolved organic carbon (DOC) exported from catchments is transported during storm events. Accurate assessments of DOC fluxes are essential to understand long-term trends in the transport of DOC from terrestrial to aquatic systems, and also the loss of carbon from peatlands to determine changes in the source/sink status of peatland carbon stores. However, many long-term monitoring programmes collect water samples at a frequency (e.g. weekly/monthly) less than the time period of a typical storm event (typically <1–2 days). As widespread observations in catchments dominated by organo-mineral soils have shown that both concentration and flux of DOC increases during storm events, lower frequency monitoring could result in substantial underestimation of DOC flux as the most dynamic periods of transport are missed. However, our intensive monitoring study in a UK upland peatland catchment showed a contrasting response to these previous studies. Our results showed that (i) DOC concentrations decreased during autumn storm events and showed a poor relationship with flow during other seasons; and that (ii) this decrease in concentrations during autumn storms caused DOC flux estimates based on weekly monitoring data to be over-estimated, rather than under-estimated, because of over rather than under estimation of the flow-weighted mean concentration used in flux calculations. However, as DOC flux is ultimately controlled by discharge volume, and therefore rainfall, and the magnitude of change in discharge was greater than the magnitude of decline in concentrations, DOC flux increased during individual storm events. The implications for long-term DOC trends are therefore contradictory, as increased rainfall could increase flux but cause an overall decrease in DOC concentrations from peatland streams. Care needs to be taken when interpreting long-term trends in DOC flux rather than concentration; as flux is calculated from discharge estimates, and discharge is controlled by rainfall, DOC flux and rainfall/discharge will always be well correlated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of reconstructing the (otherwise unknown) source and sink field of a tracer in a fluid is studied by developing and testing a simple tracer transport model of a single-level global atmosphere and a dynamic data assimilation system. The source/sink field (taken to be constant over a 10-day assimilation window) and initial tracer field are analysed together by assimilating imperfect tracer observations over the window. Experiments show that useful information about the source/sink field may be determined from relatively few observations when the initial tracer field is known very accurately a-priori, even when a-priori source/sink information is biased (the source/sink a-priori is set to zero). In this case each observation provides information about the source/sink field at positions upstream and the assimilation of many observations together can reasonably determine the location and strength of a test source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current European Union regulatory risk assessment allows application of pesticides provided that recovery of nontarget arthropods in-crop occurs within a year. Despite the long-established theory of source-sink dynamics, risk assessment ignores depletion of surrounding populations and typical field trials are restricted to plot-scale experiments. In the present study, the authors used agent-based modeling of 2 contrasting invertebrates, a spider and a beetle, to assess how the area of pesticide application and environmental half-life affect the assessment of recovery at the plot scale and impact the population at the landscape scale. Small-scale plot experiments were simulated for pesticides with different application rates and environmental half-lives. The same pesticides were then evaluated at the landscape scale (10 km × 10 km) assuming continuous year-on-year usage. The authors' results show that recovery time estimated from plot experiments is a poor indicator of long-term population impact at the landscape level and that the spatial scale of pesticide application strongly determines population-level impact. This raises serious doubts as to the utility of plot-recovery experiments in pesticide regulatory risk assessment for population-level protection. Predictions from the model are supported by empirical evidence from a series of studies carried out in the decade starting in 1988. The issues raised then can now be addressed using simulation. Prediction of impacts at landscape scales should be more widely used in assessing the risks posed by environmental stressors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Senescence represents the final developmental act of the leaf, during which the leaf cell is dismantled in a coordinated manner to remobilize nutrients and to secure reproductive success. The process of senescence provides the plant with phenotypic plasticity to help it adapt to adverse environmental conditions. Here, we provide a comprehensive overview of the factors and mechanisms that control the onset of senescence. We explain how the competence to senesce is established during leaf development, as depicted by the senescence window model. We also discuss the mechanisms by which phytohormones and environmental stresses control senescence, as well as the impact of source-sink relationships on plant yield and stress tolerance. In addition, we discuss the role of senescence as a strategy for stress adaptation and how crop production and food quality could benefit from engineering or breeding crops with altered onset of senescence.