18 resultados para Sonaatti pianolle ja viululle c-molli op. 30 nro. 2
em CentAUR: Central Archive University of Reading - UK
Resumo:
Reaction of a group of N-(2'-hydroxyphenyl)benzaldimines, derived from 2-aminophenol and five para-substituted benzaldehydes (the para substituents are OCH3, CH3, H, Cl and NO2), with [Rh(PPh3)(3)Cl] in refluxing toluene in the presence of a base (NEW afforded a family of organometallic complexes of rhodium(III). The crystal structure of one complex has been determined by X-ray crystallography. In these complexes the benzaldimine ligands are coordinated to the metal center, via dissociation of the phenolic proton and the phenyl proton at the ortho position of the phenyl ring in the imine fragment, as dianionic tridentate C,N,O-donors, and the two PPh3 ligands are trans. The complexes are diamagnetic (low-spin d(6), S = 0) and show intense MLCT transitions in the visible region. Cyclic voltammetry shows a Rh(III)-Rh(IV) oxidation within 0.63-0.93 V vs SCE followed by an oxidation of the coordinated benzaldimine ligand. A reduction of the coordinated benzaldimine is also observed within -0.96 to -1.04 V vs SCE. Potential of the Rh(Ill)-Rh(IV) oxidation is found to be sensitive to the nature of the para-substituent. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Platelets are activated by a range of stimuli that share little or no resemblance in structure to each other or to recognized ligands, including diesel exhaust particles (DEP), small peptides [4N1-1, Champs (computed helical anti-membrane proteins), LSARLAF (Leu-Ser-Ala-Arg-Leu-Ala-Phe)], proteins (histones) and large polysaccharides (fucoidan, dextran sulfate). This miscellaneous group stimulate aggregation of human and mouse platelets through the glycoprotein VI (GPVI)-FcR γ-chain complex and/or C-type lectin-like receptor-2 (CLEC-2) as shown using platelets from mice deficient in either or both of these receptors. In addition, all of these ligands stimulate tyrosine phosphorylation in GPVI/CLEC-2-double-deficient platelets, indicating that they bind to additional surface receptors, although only in the case of dextran sulfate does this lead to activation. DEP, fucoidan and dextran sulfate, but not the other agonists, activate GPVI and CLEC-2 in transfected cell lines as shown using a sensitive reporter assay confirming a direct interaction with the two receptors. We conclude that this miscellaneous group of ligands bind to multiple proteins on the cell surface including GPVI and/or CLEC-2, inducing activation. These results have pathophysiological significance in a variety of conditions that involve exposure to activating charged/hydrophobic agents.
Resumo:
Fucoidan, a sulfated polysaccharide from Fucus vesiculosus, decreases bleeding time and clotting time in hemophilia, possibly through inhibition of tissue factor pathway inhibitor. However, its effect on platelets and the receptor by which fucoidan induces cellular processes has not been elucidated. In this study, we demonstrate that fucoidan induces platelet activation in a concentration-dependent manner. Fucoidan-induced platelet activation was completely abolished by the pan-Src family kinase (SFK) inhibitor, PP2, or when Syk is inhibited. PP2 abolished phosphorylations of Syk and Phospholipase C-γ2. Fucoidan-induced platelet activation had a lag phase, which is reminiscent of platelet activation by collagen and CLEC-2 receptor agonists. Platelet activation by fucoidan was only slightly inhibited in FcRγ-chain null mice, indicating that fucoidan was not acting primarily through GPVI receptor. On the other hand, fucoidan-induced platelet activation was inhibited in platelet-specific CLEC-2 knock-out murine platelets revealing CLEC-2 as a physiological target of fucoidan. Thus, our data show fucoidan as a novel CLEC-2 receptor agonist that activates platelets through a SFK-dependent signaling pathway. Furthermore, the efficacy of fucoidan in hemophilia raises the possibility that decreased bleeding times could be achieved through activation of platelets.
Resumo:
Under the United Nations Framework Convention on Climate Change (UNFCCC), Non-Annex 1 countries such as Kenya are obliged to report green house gas (GHG) emissions from all sources where possible, including those from soils as a result of changes in land use or land management. At present, the convention encourages countries to estimate emissions using the most advanced methods possible, given the country circumstances and resources. Estimates of soil organic carbon (SOC) stocks and changes were made for Kenya using the Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System. The tool conducts analysis using three methods: (1) the Century general ecosystem model; (2) the RothC soil C decomposition model; and (3) the Intergovernmental Panel on Climate Change (IPCC) method for assessing soil C at regional scales. The required datasets included: land use history, monthly mean precipitation, monthly mean minimum and maximum temperatures for all the agro-climatic zones of Kenya and historical vegetation cover. Soil C stocks of 1.4-2.0 Pg (0-20 cm), compared well with a Soil and Terrain (SOTER) based approach that estimated similar to .8-2.0 Pg (0-30 cm). In 1990 48% of the country had SOC stocks of < 18 t C ha(-1) and 20% of the country had SOC stocks of 18-30 t C ha(-1), whereas in 2000 56% of the country had SOC stocks of < 18 t C ha(-1) and 31% of the country had SOC stocks of 18-30 t C ha(-1). Conversion of natural vegetation to annual crops led to the greatest soil C losses. Simulations suggest that soil C losses remain substantial throughout the modelling period of 1990-2030. All three methods involved in the GEFSOC System estimated that there would be a net loss of soil C between 2000 and 2030 in Kenya. The decline was more marked with RothC than with Century or the IPCC method. In non-hydric soils the SOC change rates were more pronounced in high sandy soils compared to high clay soils in most land use systems. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background and Aims The negative logarithmic relationship between orthodox seed longevity and moisture content in hermetic storage is subject to a low-moisture-content limit (m(c)), but is m(c) affected by temperature? Methods Red clover (Trifolium pratense) and alfalfa (Medicago sativa) seeds were stored hermetically at 12 moisture contents (2-15 %) and five temperatures (-20, 30, 40, 50 and 65 degrees C) for up to 14.5 years, and loss in viability was estimated. Key Results Viability did not change during 14.5 years hermetic storage at -20 degrees C with moisture contents from 2.2 to 14.9 % for red clover, or 2.0 to 12.0 % for alfalfa. Negative logarithmic relationships between longevity and moisture contents > m(c) were detected at 30-65 degrees C, with discontinuities at low moisture contents; m(c) varied between 4.0 and 5.4 % (red clover) or 4.2 and 5.5 % (alfalfa), depending upon storage temperature. Within the ranges investigated, a reduction in moisture content below m(c) at any one temperature had no effect on longevity. Estimates of m(c) were greater the cooler the temperature, the relationship (P < 0.01) being curvilinear. Above m(c), the estimates of C-H and C-Q (i.e. the temperature term of the seed viability equation) did not differ (P > 0.10) between species, whereas those of K-E and C-W did (P < 0.001). Conclusions The low-moisture-content limit to negative logarithmic relationships between seed longevity and moisture content in hermetic storage increased the cooler the storage temperature, by approx. 1.5 % over 35 degrees C (4.0-4.2 % at 65 degrees C to 5.4-5.5 % at 30-40 degrees C) in these species. Further reduction in moisture content was not damaging. The variation in m(c) implies greater sensitivity of longevity to temperature above, compared with below, m(c). This was confirmed (P < 0.005).
Resumo:
The hexaazamacrocycle 7,22-dimethyl-3,7,11,18,22,26-hexaazatricyclo[26.2.2.2(13,16)] tetratriaconta-1(30), 13,15,28,31,33- hexaene (Me-2[30] pbz(2)N(6)) was synthesized and characterised by single crystal X-ray diffraction. The macrocycle adopts a conformation with the two aromatic rings almost parallel at a distance of ca. 4.24 Angstrom, but displaced relative to each other by ca. 1.51 Angstrom. The protonation constants of this compound and the stability constants of its complexes with Cu2+ and Zn2+, were determined in water - methanol (9 : 1 v/v) at 25 degreesC with ionic strength 0.10 mol dm(-3) in KCl. The potentiometric and spectroscopic studies (NMR of zinc, cadmium and lead complexes, and EPR of the copper complexes) indicate the formation of only dinuclear complexes. The association constants of the dinuclear copper complex with anions ( thiocyanate, terephthalate and glyphosate) and neutral molecules (1,4-benzenedimethanol, p-xylylenediamine and terephthalic acid) were determined at 20 degreesC in methanol. The structural preferences of this ligand and of its dinuclear copper(II) complex with a variety of bridging ligands were evaluated theoretically by molecular mechanics calculations (MM) and molecular dynamics (MD) using quenching techniques.
Resumo:
The effects of isoelectronic replacement of a neutral nitrogen donor atom by an anionic carbon atom in terpyridine ruthenium(II) complexes on the electronic and photophysical properties of the resulting N,C,N'- and C,N,N'-cyclometalated aryl ruthenium(II) complexes were investigated. To this end, a series of complexes was prepared either with ligands containing exclusively nitrogen donor atoms, that is, [Ru(R-1-tpy)(R-2-tpy)](2+) (R-1, R-2 = H, CO2Et), or bearing either one N,C,N'- or C,N,N'-cyclometalated ligand and one tpy ligand, that is, [Ru(R-1-(NCN)-C-Lambda-N-Lambda)(R-2-tpy)](+) and [Ru(R-1-(CNN)-N-Lambda-N-Lambda)(R-2-tpy)](+), respectively. Single-crystal X-ray structure determinations showed that cyclometalation does not significantly alter the overall geometry of the complexes but does change the bond lengths around the ruthenium(II) center, especially the nitrogen-to-ruthenium bond length trans to the carbanion. Substitution of either of the ligands with electron-withdrawing ester functionalities fine-tuned the electronic properties and resulted in the presence of an IR probe. Using trends obtained from redox potentials, emission energies, IR spectroelectrochemical responses, and the character of the lowest unoccupied molecular orbitals from DFT studies, it is shown that the first reduction process and luminescence are associated with the ester-substituted C,N,N'-cyclometalated ligand in [Ru(EtO2C-(CNN)-N-Lambda-N-Lambda)(tpy)](+). Cyclometalation in an N,C,N'-bonding motif changed the energetic order of the ruthenium d(zx), d(yz), and d(xy) orbitals. The red-shifted absorption in the N,C,N'-cyclometalated complexes is assigned to MLCT transitions to the tpy ligand. The red shift observed upon introduction of the ester moiety is associated with an increase in intensity of low-energy transitions, rather than a red shift of the main transition. Cyclometalation in the C,N,N'-binding motif also red-shifts the absorption, but the corresponding transition is associated with both ligand types. Luminescence of the cyclometalated complexes is relatively independent of the mode of cyclometalation, obeying the energy gap law within each individual series.
Resumo:
Chilled breasts of chicken were inoculated with Salmonella infantis or Pseudomonas aeruginosa and then given one of the following treatments: (i) exposure to gaseous ozone (>2000 ppm for up to 30 min); (ii) storage under 70% CO2:30% N-2; and (iii) exposure to gaseous ozone (>2000 ppm for 15 min) followed by storage under 70% CO2:30% N-2; all storage at 7degreesC. Gaseous ozone reduced the counts of samnonellae by 97(Y,, and pseudomonads by 95%, but indigenous coliforms were unaffected. Under the modified atmosphere, the cell count of S. infantis was reduced by 72% following initial exposure and then stabilised, coliforms grew, but Ps. aeruginosa behaved like S. infantis-initial reduction (58%) followed by stability. Exposure to gaseous ozone followed by gas packaging allowed survival of S. infantis, Ps. aeruginosa and coliforms over 9 days at 7degreesC, but there was no evidence of any sensory deterioration. It is proposed that the latter treatment could, in a modified form perhaps, be used to reduce the contamination of chicken carcasses with salmonellae and improve their shelf-life. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Analysis and modeling of X-ray and neutron Bragg and total diffraction data show that the compounds referred to in the literature as “Pd(CN)2”and“Pt(CN)2” are nanocrystalline materials containing of small sheets of vertex-sharing square-planar M(CN)4 units, layered in a disordered manner with an intersheet separation of 3.44 A at 300 K. The small size of the crystallites means that the sheets’ edges form a significant fraction of each material. The Pd(CN)2 nanocrystallites studied using total neutron diffraction are terminated by water and the Pt(CN)2 nanocrystallites by ammonia, in place of half of the terminal cyanide groups, thus maintaining charge neutrality. The neutron samples contain sheets of approximate dimensions 30 A x 30 A. For sheets of the size we describe, our structural models predict compositions of Pd(CN)2-xH2O and Pt(CN)2-yNH3 (x = y = 0.29). These values are in good agreement with those obtained from total neutron diffraction and thermal analysis, and are also supported by infrared and Raman spectroscopy measurements. It is also possible to prepare related compounds Pd(CN)2-pNH3 and Pt(CN)2-qH2O, in which the terminating groups are exchanged. Additional samples showing sheet sizes in the range 10 A x 10 A (y = 0.67) to 80 A x 80 A (p = q = 0.12), as determined by X-ray diffraction, have been prepared. The related mixed-metal phase, Pd1/2Pt1/2(CN)2-qH2O(q = 0.50), is also nanocrystalline (sheet size 15 A x 15 A). In all cases, the interiors of the sheets are isostructural with those found in Ni(CN)2. Removal of the final traces of water or ammonia by heating results in decomposition of the compounds to Pd and Pt metal, or in the case of the mixed-metal cyanide, the alloy, Pd1/2Pt1/2, making it impossible to prepare the simple cyanides, Pd(CN)2, Pt(CN)2 or Pd1/2Pt1/2(CN)2, by this method.
Resumo:
Globalisation has prompted increasing numbers of construction profes-sional services (CPS) firms to internationalise and export their services. The driver has been twofold; firstly to increase turnover/profits and sec-ondly, to minimise the risk of a reliance on working in a single domestic market which has a fluctuating demand. Secondly, where firms have out-grown their domestic market, and in order to expand, they must export overseas. There has been little research into the way CPS firms operate overseas, yet construction represents approximately 10% of global GDP; this means that understanding CPS firms is important. This paper investigates how CPS firms internationalise and the drivers that impact their decisions and operations overseas. A survey was undertaken and interviews conducted that showed CPS firms are project driven, in-vesting heavily in the process of seeking work/bidding for projects, and are very focused on delivering projects with minimum risk. Increasing foreign ownership, changing procurement approaches and more consolidation of CPS firms in the global marketplace present a changing business land-scape. The research develops a framework of tangible and intangible factors, such as competencies, business organisation culture, leadership and reputation in order to better understand how CPS firms export their ser-vices. Whilst all CPS firms share the same framework of factors, the re-sulting synergies are different not only for each firm but also for each pro-ject. The knowledge-intensive and project-based nature of CPS firms presents a challenge in understanding the way they operate in the global service economy.
Resumo:
Climate controls upland habitats, soils and their associated ecosystem services; therefore, understanding possible changes in upland climatic conditions can provide a rapid assessment of climatic vulnerability over the next century. We used 3 different climatic indices that were optimised to fit the upland area classified by the EU as a Severely Disadvantaged Area (SDA) 1961–1990. Upland areas within the SDA covered all altitudinal ranges, whereas the maximum altitude of lowland areas outside of the SDA was ca. 300 m. In general, the climatic index based on the ratio between annual accumulated temperature (as a measure of growing season length) and annual precipitation predicted 96% of the SDA mapped area, which was slightly better than those indices based on annual or seasonal water deficit. Overall, all climatic indices showed that upland environments were exposed to some degree of change by 2071–2100 under UKCIP02 climate projections for high and low emissions scenarios. The projected area declined by 13 to 51% across 3 indices for the low emissions scenario and by 24 to 84% for the high emissions scenario. Mean altitude of the upland area increased by +11 to +86 m for the low scenario and +21 to +178 m for the high scenario. Low altitude areas in eastern and southern Great Britain were most vulnerable to change. These projected climatic changes are likely to affect upland habitat composition, long-term soil carbon storage and wider ecosystem service provision, although it is not yet possible to determine the rate at which this might occur.
Resumo:
The synthesis and characterisation of the complexes [η2-{2-H-1-(Me3SiC ≡ C)-C60}Co2(CO)6] (2)} and [η-2-{2-H-1-(Me3SiC ≡ C)-C60}Ni2η-C5H5)2] (3)} is reported, together with a single-crystal molecular structure for (3). This provides the first structural data for an acyclic metal derivative of [60]-fullerene.
Resumo:
We have compiled 223 sedimentary charcoal records from Australasia in order to examine the temporal and spatial variability of fire regimes during the Late Quaternary. While some of these records cover more than a full glacial cycle, here we focus on the last 70,000 years when the number of individual records in the compilation allows more robust conclusions. On orbital time scales, fire in Australasia predominantly reflects climate, with colder periods characterized by less and warmer intervals by more biomass burning. The composite record for the region also shows considerable millennial-scale variability during the last glacial interval (73.5–14.7 ka). Within the limits of the dating uncertainties of individual records, the variability shown by the composite charcoal record is more similar to the form, number and timing of Dansgaard–Oeschger cycles as observed in Greenland ice cores than to the variability expressed in the Antarctic ice-core record. The composite charcoal record suggests increased biomass burning in the Australasian region during Greenland Interstadials and reduced burning during Greenland Stadials. Millennial-scale variability is characteristic of the composite record of the sub-tropical high pressure belt during the past 21 ka, but the tropics show a somewhat simpler pattern of variability with major peaks in biomass burning around 15 ka and 8 ka. There is no distinct change in fire regime corresponding to the arrival of humans in Australia at 50 ± 10 ka and no correlation between archaeological evidence of increased human activity during the past 40 ka and the history of biomass burning. However, changes in biomass burning in the last 200 years may have been exacerbated or influenced by humans.
Resumo:
In Indian classical music, ragas constitute specific combinations of tonic intervals potentially capable of evoking distinct emotions. A raga composition is typically presented in two modes, namely, alaap and gat. Alaap is the note by note delineation of a raga bound by a slow tempo, but not bound by a rhythmic cycle. Gat on the other hand is rendered at a faster tempo and follows a rhythmic cycle. Our primary objective was to (1) discriminate the emotions experienced across alaap and gat of ragas, (2) investigate the association of tonic intervals, tempo and rhythmic regularity with emotional response. 122 participants rated their experienced emotion across alaap and gat of 12 ragas. Analysis of the emotional responses revealed that (1) ragas elicit distinct emotions across the two presentation modes, and (2) specific tonic intervals are robust predictors of emotional response. Specifically, our results showed that the ‘minor second’ is a direct predictor of negative valence. (3) Tonality determines the emotion experienced for a raga where as rhythmic regularity and tempo modulate levels of arousal. Our findings provide new insights into the emotional response to Indian ragas and the impact of tempo, rhythmic regularity and tonality on it.