53 resultados para Somatosensory cortex

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on the cortical sources of nociceptive laser-evoked brain potentials (LEPs) began almost two decades ago (Tarkka and Treede, 1993). Whereas there is a large consensus on the sources of the late part of the LEP waveform (N2 and P2 waves), the relative contribution of the primary somatosensory cortex (S1) to the early part of the LEP waveform (N1 wave) is still debated. To address this issue we recorded LEPs elicited by the stimulation of four limbs in a large population (n=35). Early LEP generators were estimated both at single-subject and group level, using three different approaches: distributed source analysis, dipolar source modeling, and probabilistic independent component analysis (ICA). We show that the scalp distribution of the earliest LEP response to hand stimulation was maximal over the central-parietal electrodes contralateral to the stimulated side, while that of the earliest LEP response to foot stimulation was maximal over the central-parietal midline electrodes. Crucially, all three approaches indicated hand and foot S1 areas as generators of the earliest LEP response. Altogether, these findings indicate that the earliest part of the scalp response elicited by a selective nociceptive stimulus is largely explained by activity in the contralateral S1, with negligible contribution from the secondary somatosensory cortex (S2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although promise exists for patterns of resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) brain connectivity to be used as biomarkers of early brain pathology, a full understanding of the nature of the relationship between neural activity and spontaneous fMRI BOLD fluctuations is required before such data can be correctly interpreted. To investigate this issue, we combined electrophysiological recordings of rapid changes in multi-laminar local field potentials from the somatosensory cortex of anaesthetized rats with concurrent two-dimensional optical imaging spectroscopy measurements of resting-state haemodynamics that underlie fluctuations in the BOLD fMRI signal. After neural ‘events’ were identified, their time points served to indicate the start of an epoch in the accompanying haemodynamic fluctuations. Multiple epochs for both neural ‘events’ and the accompanying haemodynamic fluctuations were averaged. We found that the averaged epochs of resting-state haemodynamic fluctuations taken after neural ‘events’ closely resembled the temporal profile of stimulus-evoked cortical haemodynamics. Furthermore, we were able to demonstrate that averaged epochs of resting-state haemodynamic fluctuations resembling the temporal profile of stimulus-evoked haemodynamics could also be found after peaks in neural activity filtered into specific electroencephalographic frequency bands (theta, alpha, beta, and gamma). This technique allows investigation of resting-state neurovascular coupling using methodologies that are directly comparable to that developed for investigating stimulus-evoked neurovascular responses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although the somatosensory homunculus is a classically used description of the way somatosensory inputs are processed in the brain, the actual contributions of primary (SI) and secondary (SII) somatosensory cortices to the spatial coding of touch remain poorly understood. We studied adaptation of the fMRI BOLD response in the somatosensory cortex by delivering pairs of vibrotactile stimuli to the finger tips of the index and middle fingers. The first stimulus (adaptor) was delivered either to the index or to the middle finger of the right or left hand, whereas the second stimulus (test) was always administered to the left index finger. The overall BOLD response evoked by the stimulation was primarily contralateral in SI and was more bilateral in SII. However, our fMRI adaptation approach also revealed that both somatosensory cortices were sensitive to ipsilateral as well as to contralateral inputs. SI and SII adapted more after subsequent stimulation of homologous as compared with nonhomologous fingers, showing a distinction between different fingers. Most importantly, for both somatosensory cortices, this finger-specific adaptation occurred irrespective of whether the tactile stimulus was delivered to the same or to different hands. This result implies integration of contralateral and ipsilateral somatosensory inputs in SI as well as in SII. Our findings suggest that SI is more than a simple relay for sensory information and that both SI and SII contribute to the spatial coding of touch by discriminating between body parts (fingers) and by integrating the somatosensory input from the two sides of the body (hands).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Detection of a tactile stimulus on one finger is impaired when a concurrent stimulus (masker) is presented on an additional finger of the same or the opposite hand. This phenomenon is known to be finger-specific at the within-hand level. However, whether this specificity is also maintained at the between-hand level is not known. In four experiments, we addressed this issue by combining a Bayesian adaptive staircase procedure (QUEST) with a two-interval forced choice (2IFC) design in order to establish threshold for detecting 200ms, 100Hz sinusoidal vibrations applied to the index or little fingertip of either hand (targets). We systematically varied the masker finger (index, middle, ring, or little finger of either hand), while controlling the spatial location of the target and masker stimuli. Detection thresholds varied consistently as a function of the masker finger when the latter was on the same hand (Experiments 1 and 2), but not when on different hands (Experiments 3 and 4). Within the hand, detection thresholds increased for masker fingers closest to the target finger (i.e., middle>ring when the target was index). Between the hands, detection thresholds were higher only when the masker was present on any finger as compared to when the target was presented in isolation. The within hand effect of masker finger is consistent with the segregation of different fingers at the early stages of somatosensory processing, from the periphery to the primary somatosensory cortex (SI). We propose that detection is finger-specific and reflects the organisation of somatosensory receptive fields in SI within, but not between the hands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 'self' is a complex multidimensional construct deeply embedded and in many ways defined by our relations with the social world. Individuals with autism are impaired in both self-referential and other-referential social cognitive processing. Atypical neural representation of the self may be a key to understanding the nature of such impairments. Using functional magnetic resonance imaging we scanned adult males with an autism spectrum condition and age and IQ-matched neurotypical males while they made reflective mentalizing or physical judgements about themselves or the British Queen. Neurotypical individuals preferentially recruit the middle cingulate cortex and ventromedial prefrontal cortex in response to self compared with other-referential processing. In autism, ventromedial prefrontal cortex responded equally to self and other, while middle cingulate cortex responded more to other-mentalizing than self-mentalizing. These atypical responses occur only in areas where self-information is preferentially processed and does not affect areas that preferentially respond to other-referential information. In autism, atypical neural self-representation was also apparent via reduced functional connectivity between ventromedial prefrontal cortex and areas associated with lower level embodied representations, such as ventral premotor and somatosensory cortex. Furthermore, the magnitude of neural self-other distinction in ventromedial prefrontal cortex was strongly related to the magnitude of early childhood social impairments in autism. Individuals whose ventromedial prefrontal cortex made the largest distinction between mentalizing about self and other were least socially impaired in early childhood, while those whose ventromedial prefrontal cortex made little to no distinction between mentalizing about self and other were the most socially impaired in early childhood. These observations reveal that the atypical organization of neural circuitry preferentially coding for self-information is a key mechanism at the heart of both self-referential and social impairments in autism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent evidence suggests that immobilization of the upper limb for 2–3 weeks induces changes in cortical thickness as well as motor performance. In constraint induced (CI) therapy, one of the most effective interventions for hemiplegia, the non-paretic arm is constrained to enforce the use of the paretic arm in the home setting. With the present study we aimed to explore whether non-paretic arm immobilization in CI therapy induces structural changes in the non-lesioned hemisphere, and how these changes are related to treatment benefit. 31 patients with chronic hemiparesis participated in CI therapy with (N = 14) and without (N = 17) constraint. Motor ability scores were acquired before and after treatment. Diffusion tensor imaging (DTI) data was obtained prior to treatment. Cortical thickness was measured with the Freesurfer software. In both groups cortical thickness in the contralesional primary somatosensory cortex increased and motor function improved with the intervention. However the cortical thickness change was not associated with the magnitude of motor function improvement. Moreover, the treatment effect and the cortical thickness change were not significantly different between the constraint and the non-constraint groups. There was no correlation between fractional anisotropy changes in the non-lesioned hemisphere and treatment outcome. CI therapy induced cortical thickness changes in contralesional sensorimotor regions, but this effect does not appear to be driven by the immobilization of the non-paretic arm, as indicated by the absence of differences between the constraint and the non-constraint groups. Our data does not suggest that the arm immobilization used in CI therapy is associated with noticeable cortical thinning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed understanding of the haemodynamic changes that underlie non-invasive neuroimaging techniques such as blood oxygen level dependent functional magnetic resonance imaging is essential if we are to continue to extend the use of these methods for understanding brain function and dysfunction. The use of animal and in particular rodent research models has been central to these endeavours as they allow in-vivo experimental techniques that provide measurements of the haemodynamic response function at high temporal and spatial resolution. A limitation of most of this research is the use of anaesthetic agents which may disrupt or mask important features of neurovascular coupling or the haemodynamic response function. In this study we therefore measured spatiotemporal cortical haemodynamic responses to somatosensory stimulation in awake rats using optical imaging spectroscopy. Trained, restrained animals received non-noxious stimulation of the whisker pad via chronically implanted stimulating microwires whilst optical recordings were made from the contralateral somatosensory cortex through a thin cranial window. The responses we measure from un-anaesthetised animals are substantially different from those reported in previous studies which have used anaesthetised animals. These differences include biphasic response regions (initial increases in blood volume and oxygenation followed by subsequent decreases) as well as oscillations in the response time series of awake animals. These haemodynamic response features do not reflect concomitant changes in the underlying neuronal activity and therefore reflect neurovascular or cerebrovascular processes. These hitherto unreported hyperemic response dynamics may have important implications for the use of anaesthetised animal models for research into the haemodynamic response function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding neurovascular coupling is a prerequisite for the interpretation of results obtained from modern neuroimaging techniques. This study investigated the hemodynamic and neural responses in rat somatosensory cortex elicited by 16 seconds electrical whisker stimuli. Hemodynamics were measured by optical imaging spectroscopy and neural activity by multichannel electrophysiology. Previous studies have suggested that the whisker-evoked hemodynamic response contains two mechanisms, a transient ‘backwards’ dilation of the middle cerebral artery, followed by an increase in blood volume localized to the site of neural activity. To distinguish between the mechanisms responsible for these aspects of the response, we presented whisker stimuli during normocapnia (‘control’), and during a high level of hypercapnia. Hypercapnia was used to ‘predilate’ arteries and thus possibly ‘inhibit’ aspects of the response related to the ‘early’ mechanism. Indeed, hemodynamic data suggested that the transient stimulus-evoked response was absent under hypercapnia. However, evoked neural responses were also altered during hypercapnia and convolution of the neural responses from both the normocapnic and hypercapnic conditions with a canonical impulse response function, suggested that neurovascular coupling was similar in both conditions. Although data did not clearly dissociate early and late vascular responses, they suggest that the neurovascular coupling relationship is neurogenic in origin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modern neuroimaging techniques rely on neurovascular coupling to show regions of increased brain activation. However, little is known of the neurovascular coupling relationships that exist for inhibitory signals. To address this issue directly we developed a preparation to investigate the signal sources of one of these proposed inhibitory neurovascular signals, the negative blood oxygen level-dependent (BOLD) response (NBR), in rat somatosensory cortex. We found a reliable NBR measured in rat somatosensory cortex in response to unilateral electrical whisker stimulation, which was located in deeper cortical layers relative to the positive BOLD response. Separate optical measurements (two-dimensional optical imaging spectroscopy and laser Doppler flowmetry) revealed that the NBR was a result of decreased blood volume and flow and increased levels of deoxyhemoglobin. Neural activity in the NBR region, measured by multichannel electrodes, varied considerably as a function of cortical depth. There was a decrease in neuronal activity in deep cortical laminae. After cessation of whisker stimulation there was a large increase in neural activity above baseline. Both the decrease in neuronal activity and increase above baseline after stimulation cessation correlated well with the simultaneous measurement of blood flow suggesting that the NBR is related to decreases in neural activity in deep cortical layers. Interestingly, the magnitude of the neural decrease was largest in regions showing stimulus-evoked positive BOLD responses. Since a similar type of neural suppression in surround regions was associated with a negative BOLD signal, the increased levels of suppression in positive BOLD regions could importantly moderate the size of the observed BOLD response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An important constraint on how hemodynamic neuroimaging signals such as fMRI can be interpreted in terms of the underlying evoked activity is an understanding of neurovascular coupling mechanisms that actually generate hemodynamic responses. The predominant view at present is that the hemodynamic response is most correlated with synaptic input and subsequent neural processing rather than spiking output. It is still not clear whether input or processing is more important in the generation of hemodynamics responses. In order to investigate this we measured the hemodynamic and neural responses to electrical whisker pad stimuli in rat whisker barrel somatosensory cortex both before and after the local cortical injections of the GABAA agonist muscimol. Muscimol would not be expected to affect the thalamocortical input into the cortex but would inhibit subsequent intra-cortical processing. Pre-muscimol infusion whisker stimuli elicited the expected neural and accompanying hemodynamic responses to that reported previously. Following infusion of muscimol, although the temporal profile of neural responses to each pulse of the stimulus train was similar, the average response was reduced in magnitude by ∼79% compared to that elicited pre-infusion. The whisker-evoked hemodynamic responses were reduced by a commensurate magnitude suggesting that, although the neurovascular coupling relationships were similar for synaptic input as well as for cortical processing, the magnitude of the overall response is dominated by processing rather than from that produced from the thalamocortical input alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bewildering complexity of cortical microcircuits at the single cell level gives rise to surprisingly robust emergent activity patterns at the level of laminar and columnar local field potentials (LFPs) in response to targeted local stimuli. Here we report the results of our multivariate data-analytic approach based on simultaneous multi-site recordings using micro-electrode-array chips for investigation of the microcircuitary of rat somatosensory (barrel) cortex. We find high repeatability of stimulus-induced responses, and typical spatial distributions of LFP responses to stimuli in supragranular, granular, and infragranular layers, where the last form a particularly distinct class. Population spikes appear to travel with about 33 cm/s from granular to infragranular layers. Responses within barrel related columns have different profiles than those in neighbouring columns to the left or interchangeably to the right. Variations between slices occur, but can be minimized by strictly obeying controlled experimental protocols. Cluster analysis on normalized recordings indicates specific spatial distributions of time series reflecting the location of sources and sinks independent of the stimulus layer. Although the precise correspondences between single cell activity and LFPs are still far from clear, a sophisticated neuroinformatics approach in combination with multi-site LFP recordings in the standardized slice preparation is suitable for comparing normal conditions to genetically or pharmacologically altered situations based on real cortical microcircuitry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: We have recently shown that the phytocannabinoid Delta9-tetrahydrocannabivarin (Delta9-THCV) and the CB1 receptor antagonist AM251 increase inhibitory neurotransmission in mouse cerebellum and also exhibit anticonvulsant activity in a rat piriform cortical (PC) model of epilepsy. Possible mechanisms underlying cannabinoid actions in the CNS include CB1 receptor antagonism (by displacing endocannabinergic tone) or inverse agonism at constitutively active CB1 receptors. Here, we investigate the mode of cannabinoid action in [35S]GTPgammaS binding assays. EXPERIMENTAL APPROACH: Effects of Delta9-THCV and AM251 were tested either alone or against WIN55,212-2-induced increases in [35S]GTPgammaS binding in mouse cerebellar and PC membranes. Effects on non-CB receptor expressing CHO-D2 cell membranes were also investigated. KEY RESULTS :Delta9-THCV and AM251 both acted as potent antagonists of WIN55,212-2-induced increases in [35S]GTPgammaS binding in cerebellar and PC membranes (Delta9-THCV: pA2=7.62 and 7.44 respectively; AM251: pA2=9.93 and 9.88 respectively). At micromolar concentrations, Delta9-THCV or AM251 alone caused significant decreases in [35S]GTPgammaS binding; Delta9-THCV caused larger decreases than AM251. When applied alone in CHO-D2 membranes, Delta9-THCV and AM251 also caused concentration-related decreases in G protein activity. CONCLUSIONS AND IMPLICATIONS: Delta9-THCV and AM251 act as CB1 receptors antagonists in the cerebellum and PC, with AM251 being more potent than Delta9-THCV in both brain regions. Individually, Delta9-THCV or AM251 exhibited similar potency at CB1 receptors in the cerebellum and the PC. At micromolar concentrations, Delta9-THCV and AM251 caused a non-CB receptor-mediated depression of basal [35S]GTPgammaS binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in several classes of embryonically-expressed transcription factor genes are associated with behavioral disorders and epilepsies. However, there is little known about how such genetic and neurodevelopmental defects lead to brain dysfunction. Here we present the characterization of an epilepsy syndrome caused by the absence of the transcription factor SOX1 in mice. In vivo electroencephalographic recordings from SOX1 mutants established a correlation between behavioral changes and cortical output that was consistent with a seizure origin in the limbic forebrain. In vitro intracellular recordings from three major forebrain regions, neocortex, hippocampus and olfactory (piriform) cortex (OC) showed that only the OC exhibits abnormal enhanced synaptic excitability and spontaneous epileptiform discharges. Furthermore, the hyperexcitability of the OC neurons was present in mutants prior to the onset of seizures but was completely absent from both the hippocampus and neocortex of the same animals. The local inhibitory GABAergic neurotransmission remained normal in the OC of SOX1-deficient brains, but there was a severe developmental deficit of OC postsynaptic target neurons, mainly GABAergic projection neurons within the olfactory tubercle and the nucleus accumbens shell. Our data show that SOX1 is essential for ventral telencephalic development and suggest that the neurodevelopmental defect disrupts local neuronal circuits leading to epilepsy in the SOX1-deficient mice

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The piriform cortex (PC) is highly prone to epileptogenesis, particularly in immature animals, where decreased muscarinic modulation of PC intrinsic fibre excitatory neurotransmission is implicated as a likely cause. However, whether higher levels of acetylcholine (ACh) release occur in immature vs. adult PC remains unclear. We investigated this using in vitro extracellular electrophysiological recording techniques. Intrinsic fibre-evoked extracellular field potentials (EFPs) were recorded from layers II to III in PC brain slices prepared from immature (P14-18) and adult (P>40) rats. Adult and immature PC EFPs were suppressed by eserine (1muM) or neostigmine (1muM) application, with a greater suppression in immature ( approximately 40%) than adult ( approximately 30%) slices. Subsequent application of atropine (1muM) reversed EFP suppression, producing supranormal ( approximately 12%) recovery in adult slices, suggesting that suppression was solely muscarinic ACh receptor-mediated and that some 'basal' cholinergic 'tone' was present. Conversely, atropine only partially reversed anticholinesterase effects in immature slices, suggesting the presence of additional non-muscarinic modulation. Accordingly, nicotine (50muM) caused immature field suppression ( approximately 30%) that was further enhanced by neostigmine, whereas it had no effect on adult EFPs. Unlike atropine, nicotinic antagonists, mecamylamine and methyllycaconitine, induced immature supranormal field recovery ( approximately 20%) following anticholinesterase-induced suppression (with no effect on adult slices), confirming that basal cholinergic 'tone' was also present. We suggest that nicotinic inhibitory cholinergic modulation occurs in the immature rat PC intrinsic excitatory fibre system, possibly to complement the existing, weak muscarinic modulation, and could be another important developmentally regulated system governing immature PC susceptibility towards epileptogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppression of depolarizing postsynaptic potentials and isolated GABA-A receptor-mediated fast inhibitory postsynaptic potentials by the muscarinic acetylcholine receptor agonist, oxotremorine-M (10 microM), was investigated in adult and immature (P14-P30) rat piriform cortical (PC) slices using intracellular recording. Depolarizing postsynaptic potentials evoked by layers II-III stimulation underwent concentration-dependent inhibition in oxotremorine-M that was most likely presynaptic and M2 muscarinic acetylcholine receptor-mediated in immature, but M1-mediated in adult (P40-P80) slices; percentage inhibition was smaller in immature than in adult piriform cortex. In contrast, compared with adults, layer Ia-evoked depolarizing postsynaptic potentials in immature piriform cortex slices in oxotremorine-M, showed a prolonged multiphasic depolarization with superimposed fast transients and spikes, and an increased 'all-or-nothing' character. Isolated N-methyl-d-aspartate receptor-mediated layer Ia depolarizing postsynaptic potentials (although significantly larger in immature slices) were however, unaffected by oxotremorine-M, but blocked by dl-2-amino-5-phosphonovaleric acid. Fast inhibitory postsynaptic potentials evoked by layer Ib or layers II-III-fiber stimulation in immature slices were significantly smaller than in adults, despite similar estimated mean reversal potentials ( approximately -69 and -70 mV respectively). In oxotremorine-M, only layer Ib-fast inhibitory postsynaptic potentials were suppressed; suppression was again most likely presynaptic M2-mediated in immature slices, but M1-mediated in adults. The degree of fast inhibitory postsynaptic potential suppression was however, greater in immature than in adult piriform cortex. Our results demonstrate some important physiological and pharmacological differences between excitatory and inhibitory synaptic systems in adult and immature piriform cortex that could contribute toward the increased susceptibility of this region to muscarinic agonist-induced epileptiform activity in immature brain slices.