27 resultados para Solar Array, Shade, Power Output

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar electromagnetic radiation powers Earth’s climate system and, consequently, it is often naively assumed that changes in this solar output must be responsible for changes in Earth’s climate. However, the Sun is close to a blackbody radiator and so emits according to its surface temperature and the huge thermal time constant of the outer part of the Sun limits the variability in surface temperature and hence output. As a result, on all timescales of interest, changes in total power output are limited to small changes in effective surface temperature (associated with magnetic fields) and potential, although as yet undetected, solar radius variations. Larger variations are seen in the UV part of the spectrum which is emitted from the lower solar atmosphere (the chromosphere) and which influences Earth’s stratosphere. There is interest in“top-down” mechanisms whereby solar UV irradiance modulates stratospheric temperatures and winds which, in turn, may influence the underlying troposphere where Earth’s climate and weather reside. This contrasts with “bottom-up” effects in which the small total solar irradiance (dominated by the visible and near-IR) variations cause surface temperature changes which drive atmospheric circulations. In addition to these electromagnetic outputs, the Sun modulates energetic particle fluxes incident on the Earth. Solar Energetic Particles (SEP) are emitted by solar flares and from the shock fronts ahead of supersonic (and super-Alfvenic) ejections of material from the solar atmosphere. These SEPs enhance the destruction of polar stratospheric ozone which could be an additional form of top-down climate forcing. Even more energetic are Galactic Cosmic Rays (GCRs). These particles are not generated by the Sun, rather they originate at the shock fronts emanating from violent galactic events such as supernovae explosions; however, the expansion of the solar magnetic field into interplanetary space means that the Sun modulates the number of GCRs reaching Earth. These play a key role in enabling Earth’s global electric (thunderstorm) circuit and it has been proposed that they also modulate the formation of clouds. Both electromagnetic and corpuscular solar effects are known to vary over the solar magnetic cycle which is typically between 10 and 14 yrs in length (with an average close to 11 yrs). The solar magnetic field polarity at any one phase of one of these activity cycles is opposite to that at the same phase of the next cycle and this influences some phenomena, for example GCRs, which therefore show a 22 yr (“Hale”) cycle on average. Other phenomena, such as irradiance modulation, do not depend on the polarity of the magnetic field and so show only the basic 11-yr activity cycle. However, any effects on climate are much more significant for solar drifts over centennial timescales. This chapter discusses and evaluates potential effects on Earth’s climate system of variations in these solar inputs. Because of the great variety of proposed mechanisms, the wide range of timescales studied (from days to millennia) and the many debates (often triggered by the application of inadequate statistical methods), the literature on this subject is vast, complex, divergent and rapidly changing: consequently the number of references cited in this review is very large (yet still only a small fraction of the total).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bahrain International Circuit (BIC) and complex, at latitude 26.00N and longitude 51.54E, was built in 483 days and cost 150 million US$. The circuit consists of six different individual tracks with a 3.66 km outer track (involving 10 turns) and a 2.55 km inner track (having six turns). The complex has been designed to host a variety of other sporting activities. Fifty thousand spectators, including 10,500 in the main grandstand, can be accommodated simultaneously. State-of-the art on-site media and broadcast facilities are available. The noise level emitted from vehicles on the circuit during the Formula-1 event, on April 4th 2004, was acceptable and caused no physical disturbance to the fans in the VIP lounges or to scholars studying at the University of Bahrain's Shakeir Campus, which is only 1.5 km away from the circuit. The sound-intensity level (SIL) recorded on the balcony of the VIP lounge was 128 dB(A) and was 80 dB(A) inside the lounge. The calculated SIL immediately outside the lecture halls of the University of Bahrain was 70 dB(A) and 65 dB(A) within them. Thus racing at BIC can proceed without significantly disturbing the academic-learning process. The purchased electricity demand by the BIC complex peaked (at 4.5 MW) during the first Formula-1 event on April 4th 2004. The reverse-osmosis (RO) plant at the BIC provides 1000 m(3) of desalinated water per day for landscape irrigation. Renewable-energy inputs, (i.e., via solar and wind power), at the BIC could be harnessed to generate electricity for water desalination, air conditioning, lighting as well as for irrigation. If the covering of the BIC complex was covered by adhesively fixed modern photovoltaic cells, then similar to 1.2 MW of solar electricity could be generated. If two horizontal-axis, at 150 m height above the ground, three 75m bladed, wind turbines were to be installed at the BIC, then the output could reach 4 MW. Furthermore, if 10,000 Jojoba trees (a species renowned for having a low demand for water, needing only five irrigations per year in Bahrain and which remain green throughout the year) are planted near the circuit, then the local micro-climate would be improved with respect to human comfort as well as the local environment becoming cleaner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over recent years there has been an increasing deployment of renewable energy generation technologies, particularly large-scale wind farms. As wind farm deployment increases, it is vital to gain a good understanding of how the energy produced is affected by climate variations, over a wide range of time-scales, from short (hours to weeks) to long (months to decades) periods. By relating wind speed at specific sites in the UK to a large-scale climate pattern (the North Atlantic Oscillation or "NAO"), the power generated by a modelled wind turbine under three different NAO states is calculated. It was found that the wind conditions under these NAO states may yield a difference in the mean wind power output of up to 10%. A simple model is used to demonstrate that forecasts of future NAO states can potentially be used to improve month-ahead statistical forecasts of monthly-mean wind power generation. The results confirm that the NAO has a significant impact on the hourly-, daily- and monthly-mean power output distributions from the turbine with important implications for (a) the use of meteorological data (e.g. their relationship to large scale climate patterns) in wind farm site assessment and, (b) the utilisation of seasonal-to-decadal climate forecasts to estimate future wind farm power output. This suggests that further research into the links between large-scale climate variability and wind power generation is both necessary and valuable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various studies investigating the future impacts of integrating high levels of renewable energy make use of historical meteorological (met) station data to produce estimates of future generation. Hourly means of 10m horizontal wind are extrapolated to a standard turbine hub height using the wind profile power or log law and used to simulate the hypothetical power output of a turbine at that location; repeating this procedure using many viable locations can produce a picture of future electricity generation. However, the estimate of hub height wind speed is dependent on the choice of the wind shear exponent a or the roughness length z0, and requires a number of simplifying assumptions. This paper investigates the sensitivity of this estimation on generation output using a case study of a met station in West Freugh, Scotland. The results show that the choice of wind shear exponent is a particularly sensitive parameter which can lead to significant variation of estimated hub height wind speed and hence estimated future generation potential of a region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meteorological (met) station data is used as the basis for a number of influential studies into the impacts of the variability of renewable resources. Real turbine output data is not often easy to acquire, whereas meteorological wind data, supplied at a standardised height of 10 m, is widely available. This data can be extrapolated to a standard turbine height using the wind profile power law and used to simulate the hypothetical power output of a turbine. Utilising a number of met sites in such a manner can develop a model of future wind generation output. However, the accuracy of this extrapolation is strongly dependent on the choice of the wind shear exponent alpha. This paper investigates the accuracy of the simulated generation output compared to reality using a wind farm in North Rhins, Scotland and a nearby met station in West Freugh. The results show that while a single annual average value for alpha may be selected to accurately represent the long term energy generation from a simulated wind farm, there are significant differences between simulation and reality on an hourly power generation basis, with implications for understanding the impact of variability of renewables on short timescales, particularly system balancing and the way that conventional generation may be asked to respond to a high level of variable renewable generation on the grid in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency’s New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterised by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterised by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in conventional facilities will face additional weather-volatility through the monsoonal impact on the length and frequency of production periods (i.e. their load-duration curves).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a straightforward methodology for the fabrication of high-temperature thermoelectric (TE) modules using commercially available solder alloys and metal barriers. This methodology employs standard and accessible facilities that are simple to implement in any laboratory. A TE module formed by nine n-type Yb x Co4Sb12 and p-type Ce x Fe3CoSb12 state-of-the-art skutterudite material couples was fabricated. The physical properties of the synthesized skutterudites were determined, and the module power output, internal resistance, and thermocycling stability were evaluated in air. At a temperature difference of 365 K, the module provides more than 1.5 W cm−3 volume power density. However, thermocycling showed an increase of the internal module resistance and degradation in performance with the number of cycles when the device is operated at a hot-side temperature higher than 573 K. This may be attributed to oxidation of the skutterudite thermoelements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the evaluation in power consumption of gated clocks pipelined circuits with different register configurations in Virtex-based FPGA devices. Power impact of a gated clock circuitry aimed at reducing flip-flops output rate at the bit level is studied. Power performance is also given for pipeline stages based on the implementation of a double edge-triggered flip-flop. Using a pipelined Cordic Core circuit as an example, this study did not find evidence in power benefits either when gated clock at the bit-level or double-edge triggered flip-flops used when synthesized with FPGA logic resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many photovoltaic inverter designs make use of a buck based switched mode power supply (SMPS) to produce a rectified sinusoidal waveform. This waveform is then unfolded by a low frequency switching structure to produce a fully sinusoidal waveform. The Cuk SMPS could offer advantages over the buck in such applications. Unfortunately the Cuk converter is considered to be difficult to control using classical methods. Correct closed loop design is essential for stable operation of Cuk converters. Due to these stability issues, Cuk converter based designs often require stiff low bandwidth control loops. In order to achieve this stable closed loop performance, traditional designs invariably need large, unreliable electrolytic capacitors. In this paper, an inverter with a sliding mode control approach is presented which enables the designer to make use of the Cuk converters advantages, while ameliorating control difficulties. This control method allows the selection of passive components based predominantly on ripple and reliability specifications while requiring only one state reference signal. This allows much smaller, more reliable non-electrolytic capacitors to be used. A prototype inverter has been constructed and results obtained which demonstrate the design flexibility of the Cuk topology when coupled with sliding mode control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach is presented to identify the number of incoming signals in antenna array processing. The new method exploits the inherent properties existing in the noise eigenvalues of the covariance matrix of the array output. A single threshold has been established concerning information about the signal and noise strength, data length, and array size. When the subspace-based algorithms are adopted the computation cost of the signal number detector can almost be neglected. The performance of the threshold is robust against low SNR and short data length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores a new technique to calculate and plot the distribution of instantaneous transmit envelope power of OFDMA and SC-FDMA signals from the equation of Probability Density Function (PDF) solved numerically. The Complementary Cumulative Distribution Function (CCDF) of Instantaneous Power to Average Power Ratio (IPAPR) is computed from the structure of the transmit system matrix. This helps intuitively understand the distribution of output signal power if the structure of the transmit system matrix and the constellation used are known. The distribution obtained for OFDMA signal matches complex normal distribution. The results indicate why the CCDF of IPAPR in case of SC-FDMA is better than OFDMA for a given constellation. Finally, with this method it is shown again that cyclic prefixed DS-CDMA system is one case with optimum IPAPR. The insight that this technique provides may be useful in designing area optimised digital and power efficient analogue modules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluctuations in the solar wind plasma and magnetic field are well described by the sum of two power law distributions. It has been postulated that these distributions are the result of two independent processes: turbulence, which contributes mainly to the smaller fluctuations, and crossing the boundaries of flux tubes of coronal origin, which dominates the larger variations. In this study we explore the correspondence between changes in the magnetic field with changes in other solar wind properties. Changes in density and temperature may result from either turbulence or coronal structures, whereas changes in composition, such as the alpha-to-proton ratio are unlikely to arise from in-transit effects. Observations spanning the entire ACE dataset are compared with a null hypothesis of no correlation between magnetic field discontinuities and changes in other solar wind parameters. Evidence for coronal structuring is weaker than for in-transit turbulence, with only ∼ 25% of large magnetic field discontinuities associated with a significant change in the alpha-to-proton ratio, compared to ∼ 40% for significant density and temperature changes. However, note that a lack of detectable alpha-to-proton signature is not sufficient to discount a structure as having a solar origin.