23 resultados para Soil physical Properties
em CentAUR: Central Archive University of Reading - UK
Resumo:
Relations between the apparent electrical conductivity of the soil (ECa) and top- and sub-soil physical properties were examined for two arable fields in southern England (Crowmarsh Battle Farms and the Yattendon Estate). The spatial variation of ECa and the soil properties was explored geostatistically. The variogram ranges showed that ECa varied on a similar spatial scale to many of the soil physical properties in both fields. Several features in the map of kriged predictions of ECa were also evident in maps of the soil properties. In addition, the correlation coefficients showed a strong relation between ECa and several soil properties. A moving correlation analysis enabled differences in the relations between ECa and the soil properties to be examined within the fields. The results indicated that relations were inconsistent; they were stronger in some areas than others. A regression of ECa on the principal component scores of the leading components for both fields showed that the first two components accounted for a large proportion of the variance in ECa, whereas the others accounted for little or none. For Crowmarsh topsoil sand and clay, loss on ignition and volumetric water measured in the autumn had large correlations on the first component, and for Yattendon they were large for topsoil sand and clay, and autumn and spring volumetric water. The cross-variograms suggested strong coregionalization between ECa and several soil physical properties; in particular subsoil sand and silt at Crowmarsh, and subsoil sand and clay at Yattendon. The structural correlations from the linear model of coregionalization confirmed the strength of the relations between ECa and the subsoil properties. Nevertheless, no one property was consistently important for both fields. Although a map of ECa can indicate the general patterns of spatial variation in the soil, it is not a substitute for information on soil properties obtained by sampling and analysing the soil. Nevertheless, it could be used to guide further sampling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The relations between soil electrical conductivity (ECa) and top- and sub-soil physical properties were examined for an arable field in England. The correlation coefficients between ECa and the soil particle size fractions were large and their cross variograms showed that the coregionalization was also strong. The coregionalization was stronger for the subsoil properties than for the topsoil, the reverse to the correlation coefficients. The relations between ECa and some soil properties, such as clay and water content, appear complex and emphasize that a map of ECa cannot substitute for sampling the soil.
Resumo:
We develop a new multiwave version of the range test for shape reconstruction in inverse scattering theory. The range test [R. Potthast, et al., A ‘range test’ for determining scatterers with unknown physical properties, Inverse Problems 19(3) (2003) 533–547] has originally been proposed to obtain knowledge about an unknown scatterer when the far field pattern for only one plane wave is given. Here, we extend the method to the case of multiple waves and show that the full shape of the unknown scatterer can be reconstructed. We further will clarify the relation between the range test methods, the potential method [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Inverse Problems (Oberwolfach, 1986), Internationale Schriftenreihe zur Numerischen Mathematik, vol. 77, Birkhäuser, Basel, 1986, pp. 93–102] and the singular sources method [R. Potthast, Point sources and multipoles in inverse scattering theory, Habilitation Thesis, Göttingen, 1999]. In particular, we propose a new version of the Kirsch–Kress method using the range test and a new approach to the singular sources method based on the range test and potential method. Numerical examples of reconstructions for all four methods are provided.
Resumo:
The sustainability of cereal/legume intercropping was assessed by monitoring trends in grain yield, soil organic C (SOC) and soil extractable P (Olsen method) measured over 13 years at a long-term field trial on a P-deficient soil in semi-arid Kenya. Goat manure was applied annually for 13 years at 0, 5 and 10 t ha(-1) and trends in grain yield were not identifiable because of season-to-season variations. SOC and Olsen P increased for the first seven years of manure application and then remained constant. The residual effect of manure applied for four years only lasted another seven to eight years when assessed by yield, SOC and Olsen P. Mineral fertilizers provided the same annual rates of N and P as in 5 t ha(-1) manure and initially ,gave the same yield as manure, declining after nine years to about 80%. Therefore, manure applications could be made intermittently and nutrient requirements topped-up with fertilizers. Grain yields for sorghum with continuous manure were described well by correlations with rainfall and manure input only, if data were excluded for seasons with over 500 mm rainfall. A comprehensive simulation model should correctly describe crop losses caused by excess water.
Resumo:
The performance of the atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is assessed in terms of its ability to represent a selection of key aspects of variability in the Tropics and extratropics. These include midlatitude storm tracks and blocking activity, synoptic variability over Europe, and the North Atlantic Oscillation together with tropical convection, the Madden-Julian oscillation, and the Asian summer monsoon. Comparisons with the previous model, the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3), demonstrate that there has been a considerable increase in the transient eddy kinetic energy (EKE), bringing HadGEM1 into closer agreement with current reanalyses. This increase in EKE results from the increased horizontal resolution and, in combination with the improved physical parameterizations, leads to improvements in the representation of Northern Hemisphere storm tracks and blocking. The simulation of synoptic weather regimes over Europe is also greatly improved compared to HadCM3, again due to both increased resolution and other model developments. The variability of convection in the equatorial region is generally stronger and closer to observations than in HadCM3. There is, however, still limited convective variance coincident with several of the observed equatorial wave modes. Simulation of the Madden-Julian oscillation is improved in HadGEM1: both the activity and interannual variability are increased and the eastward propagation, although slower than observed, is much better simulated. While some aspects of the climatology of the Asian summer monsoon are improved in HadGEM1, the upper-level winds are too weak and the simulation of precipitation deteriorates. The dominant modes of monsoon interannual variability are similar in the two models, although in HadCM3 this is linked to SST forcing, while in HadGEM1 internal variability dominates. Overall, analysis of the phenomena considered here indicates that HadGEM1 performs well and, in many important respects, improves upon HadCM3. Together with the improved representation of the mean climate, this improvement in the simulation of atmospheric variability suggests that HadGEM1 provides a sound basis for future studies of climate and climate change.
Resumo:
Most suspension-feeding trichopterans spin a fine-silk capture net that is used to remove suspended matter from the water. The efficiency of these nets has previously been studied by considering the geometry of the web structure but the material from which the nets is constructed has received little attention. We report measurements of the tensile strength and extensibility of net silk from Hydropsyche siltalai. These measurements place caddisfly silk as one of the weakest natural silks so far reported, with a mean tensile strength of 221 +/- 22 megaNewtons (MN)/m(2). We also show that H. siltalai silk can more than double in length before catastrophic breakage, and that the silk is at least 2 orders of magnitude stronger than the maximum force estimated to act upon it in situ. Possible reasons for this disparity include constraints of evolutionary history and safety margins to prevent net failure or performance reduction.
Resumo:
Erythrina variegata grown from seeds showed a great deal of variation with respect to height, diameter, density of wood and dry matter production. Statistical analysis showed that the density of wood produced by any plant was not related to its growth rate, but dry matter production was associated with plant growth rate (height and diameter) that could lead to overall increased dry matter or biomass production.
Resumo:
The aim of this study was to analyze individual cows' samples from the colostrum, postcolostrum, and early lactation periods to investigate how milk composition, physical properties, stability, and suitability for processing change throughout this period. Attention was paid to the first week postpartum in which the composition of bovine mammary secretion can change markedly. Properties including pH, titratable acidity, ethanol stability (ES), rennet clotting time, and casein micelle size were analyzed, together with some compositional factors such as fat, total protein, lactose, total and ionic calcium, magnesium, citrate, phosphorus, sodium, and potassium. Total Ca (36.2 mM) and free ionic Ca (2.58 mM), Mg (5.9 mM), P (32.2 mM), and Na (24.1 mM) appeared to be high on d 5 postpartum, having decreased substantially over the first 5 d; they gradually decreased thereafter. The average pH on d 5 was only 6.49, compared with 6.64 at 1 mo postpartum. Stability measurements showed that the average ES on d 5 was 70% and the rennet clotting time was 12.2 min, which were significantly lower than values at later stages. A number of milk properties including ES, pH, protein content, and Ca2+ concentration could be useful for identifying the point of transition from colostrum to the early lactation period. Knowing the composition and physical properties of colostrum and postcolostrum secretions will help establish when such milk is suitable for processing and determine the best use for that milk.
Resumo:
Soymilks with sodium hexametaphosphate (SHMP) (0% to 1.2%) and calcium chloride (12.50, 18.75, and 25.00 mM Ca),were analyzed for total Ca, Ca ion concentration, pH, kinematic viscosity, particle diameter, and sediment after pasteurization. Higher added Ca led to significant (P <= 0.05) increases in Ca ion concentration and significant (P <= 0.05) decreases in pH. At certain levels of SHMP, higher concentrations of added Ca significantly increased (P <= 0.05) kinematic viscosity, particle diameter, and sediment. Increasing SHMP concentration reduced Ca ion concentration, particle diameter, and dry sediment content, but reduced kinematic viscosity of samples (P <= 0.05). Adding SHMP up to 0.7% influenced pH of soymilk in different ways, depending on the level of Ca addition. When the pH of Ca-fortified soymilk was adjusted to a higher level, ionic Ca decreased as pH increased. Ihere was a negative linear relationship between the logarithm of ionic Ca concentration and the adjusted pH of the soymilk. Ionic Ca appeared to be a good indicator of thermally induced sediment formation, with little sediment being produced if ionic Ca was maintained below 0.4 mM.
Interaction of heat-moisture conditions and physical properties in oat processing: II. Flake quality
Resumo:
Product quality is an important determinant of consumer acceptance. Consistent oat flake properties are thus necessary in the mill as well as in the marketplace. The effects of kilning and tempering conditions (30, 60 or 90 min at 80, 95 or 110 degrees C) on flake peroxidase activity, size, thickness, strength and water absorption were therefore determined. After kilning, some peroxidase activity remained but steaming and tempering effectively destroyed the activity of these enzymes. Thus the supposed protective effect of kilning or groat durability was not confirmed. Kilning resulted in an increase in flake specific weight, but no other significant effect on flake quality was observed. Tempering time and temperature interacted significantly to produce complex effects on flake specific weight, thickness and water absorption. Flake thickness and specific weight were significantly correlated (r = 0.808, n = 54). Longer tempering times resulted in an increased fines' fraction, from 1.45% at 30 min to 1.75% at 90 min. It is concluded that whilst kilning has little effect on flake quality, the heat treatment immediately prior to flaking, can be used to adjust flake quality independently of flake thickness.
Resumo:
Research interest in oats has focussed on their nutritional value, but there have been few studies of their food processing. Heat treatment is characteristic of oat processing, as it is needed to inactivate lipase and to facilitate flaking. A Texture Analyser was used to characterise the mechanical properties of unkilned and kilned oat groats after steaming and tempering in an oven for 30, 60 and 90 min at 80, 95 and 110 degrees C. Maximum force, number of peaks before maximum and final force after 5s hold were used to characterise the behaviour of the groats during compression. Kilned groats were larger and softer before steaming. After steaming and tempering, the moisture content of the kilned groats was higher than for unkilned groats. Hot, steamed oats were softer than cold, unsteamed groats, indicated by a decrease in maximum force from 59 to 55 N, and there was no significant difference between kilned and unkilned groats. However, higher temperatures during tempering increased maximum force. These results suggest that mild steam treatment yields softer oat groats, whereas cold or over-treated groats tend to be harder. (c) 2007 Elsevier Ltd. All rights reserved.